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Introduction

Category theory can be thought of as a sort of generalized set theory, where the
primitive concepts are those of set and function, rather than set and member-
ship. This shift of perspective allows categories to more directly describe many
structures, even those that are not particularly set-like. In category theory, the
primitive concept of set generalizes to that of object, and function to morphism.

The only assumption that we make about these generalized functions is that
they support a composition structure, whereby any configuration of compatible
morphisms can be combined to yield a new morphism, and the details of how we
go about combining the parts into a whole doesn’t matter, only the configuration
of those parts does.

This is reminiscent of many aspects of our physical world. When we build
a castle out of Lego bricks, the order in which we assembled the bricks is not
recorded anywhere in the finished product, only their configuration with respect
to one another remains.

By beginning from very few assumptions, category theory permits a great deal
of axiomatic freedom. Additional postulates (e.g. the axiom of choice) can then
be selectively reintroduced in order to characterize a particular object theory of
interest (e.g. set theory).

Because categorical characterizations are based on the concepts of object and
morphism, they must describe their subjects behaviorally (or externally), rather
than structurally (or internally): in category theory we can’t pin down what
the objects of our study actually are, only how they relate to one another via
morphisms. In this sense, category theory is the sociology of formal systems.

For example, we will see how we can characterize the cartesian product once and
for all using a universal property. This allows us to describe cartesian products of
sets, of groups, of topological spaces, of types, of propositions, and of countless
other things, all in one fell swoop, rather than on a tedious case-by-case basis.
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Chapter 1

Basic Categories

1.1 Definition of a Category

Definition 1.1.0.1 (category) A category ℂ consists of the following data:

• A collection of objects, ℂ0 (comprising the 0-dimensional part of ℂ).
We write “A ∶ ℂ” to indicate that A ∈ ℂ0.

• A collection of morphisms or “arrows”, ℂ1 (the 1-dimensional part).
We write “𝑓 ∶∶ ℂ” to indicate that 𝑓 ∈ ℂ1.

• Two morphism boundary maps from arrows to objects:
domain, “∂−”, and codomain, “∂+”.
For ℂ-objects A and B, we indicate the collection of ℂ-arrows with domain
A and codomain B by “ℂ (A → B)”, and call this collection “hom”1. When
the category in question is obvious or irrelevant, we just write “A → B”.
We indicate that an arrow 𝑓 is a member of this collection by writing
“𝑓 ∶ ℂ (A → B)” or “𝑓 ∶ A → B”.

• An identity morphism map from objects to arrows, “id”, such that both
boundaries of an object’s identity arrow are just that object itself:

id(A) ∶ A → A

• A partial binary function on arrows, morphism composition, “– ⋅ –”,
that is defined just in case the codomain of the first is equal to the domain
of the second, in which case the composite arrow has the domain of the
first and codomain of the second:

if 𝑓 ∶ A → B and 𝑔 ∶ B → C then 𝑓 ⋅ 𝑔 ∶ A → C
1presumably, short for “homomorphisms”
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This data is required to respect the following relations.

• composition left unit law: for an arrow 𝑓 ∶ A → B,

id(A) ⋅ 𝑓 = 𝑓

• composition right unit law: for an arrow 𝑓 ∶ A → B,

𝑓 ⋅ id(B) = 𝑓

• composition associative law: for arrows 𝑓 ∶ A → B, 𝑔 ∶ B → C and
ℎ ∶ C → D,

(𝑓 ⋅ 𝑔) ⋅ ℎ = 𝑓 ⋅ (𝑔 ⋅ ℎ)

By the associative law we may unambiguously write compositions without using
brackets.
Definition 1.1.0.2 In order to avoid gratuitously naming the boundaries of
arrows, we will call a pair of arrows 𝑓 , 𝑔 ∶∶ ℂ:

• coinitial, or a “span”, if ∂−(𝑓) = ∂−(𝑔),
• coterminal, or a “cospan”, if ∂+(𝑓) = ∂+(𝑔),
• composable if ∂+(𝑓) = ∂−(𝑔),
• parallel if both coinitial and coterminal, and

• anti-parallel if composable in both orders.

Additionally, we will call an arrow an endomorphism if it is composable with
itself, and a list of arrows a path if they are serially composable, that is, if
∂+(𝑓𝑖) = ∂−(𝑓𝑖+1) for the list [𝑓0 , ⋯ , 𝑓𝑛].
Remark 1.1.0.3 (applicative order composition) It is common to see the com-
position 𝑓 ⋅ 𝑔 written as “𝑔 ∘ 𝑓”. This can be useful when we want to apply a
composite morphism to an argument in a category where a morphism is some
sort of function. Then (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)), which coincides with our custom to
write function application with the argument on the right. It may help to read
“𝑓 ⋅ 𝑔” as “𝑓 then 𝑔”, and to read “𝑔 ∘ 𝑓” as “𝑔 after 𝑓”.
Remark 1.1.0.4 (dimensional promotion) It is often convenient to call the
identity arrow on an object by the same name as the object itself, e.g. to write
“A” in place of id(A). This is called dimensional promotion, and will become
useful as we introduce more complex arrow constructions and concision becomes
more of an issue.
Remark 1.1.0.5 (unbiased presentation) There is an equivalent presentation of
categories in terms of unbiased composition. There, instead of a single binary
composition operation acting on a composable pair of arrows, we have a length-
indexed composition operation for paths of arrows (still with unit and associative
laws). In this presentation, an identity morphism is a nullary composition, a
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morphism itself is a unary composition, and in general, any length 𝑛 path of
arrows has a unique composite. Although more cumbersome to axiomatize, an
unbiased presentation of categories makes it easier to appreciate the idea at the
heart of the definition: every composable configuration of things should have a
unique composite.
Exercise 1.1.0.6 (uniqueness of composition units) By definition, identity ar-
rows act as (two-sided) units for composition. Prove that they are the only
arrows with this property.

Hint (proof by Fight Club): suppose there were another arrow, id′ ∶ A → A,
that acted as a unit for composition at A, then what would we know about the
composite id(A) ⋅ id′(A)?

1.2 Diagrams

We think of an arrow as emanating from its domain and proceeding to its
codomain. We can represent configurations of arrows of a category using a
directed graph whose vertices are labeled by objects of the category and whose
edges are labeled by arrows. Such a graph is known as a diagram, for example:

A B C𝑓 𝑔

We can represent equations between arrows using diagrams as well. We say that
a diagram is commuting or “commutes” if the composites of parallel paths
depicted in the diagram are equal. For example, the fact that each pair of
composable arrows has a unique composite gives us commuting composition
triangles, such as:

B

A C

𝑓 𝑔

𝑓 ⋅ 𝑔

Commuting diagrams may be extended by pre- or post-composition of arrows.
This is called whiskering, and depicts the fact that equality of morphisms is
a congruence with respect to composition: if 𝑔1 = 𝑔2 then 𝑓 ⋅ 𝑔1 = 𝑓 ⋅ 𝑔2 and
𝑔1 ⋅ ℎ = 𝑔2 ⋅ ℎ whenever the composites are defined. The name comes from the
fact that the arrows pre- or post-composed to the diagram look like whiskers:

A B C D𝑓
𝑔1

𝑔2

ℎ
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Pairs of commuting diagrams may also be combined along a common path. This
is called pasting, and depicts the transitivity of equality: if 𝑓1 = 𝑓2 and 𝑓2 = 𝑓3
then 𝑓1 = 𝑓3.

We may express the unit and associative laws for composition succinctly using
commuting diagrams:

A

A B

B

id

id

𝑓

𝑓

𝑓 and

A C

B D
𝑓

𝑔 ℎ

𝑓 ⋅ 𝑔

𝑔 ⋅ ℎ

In the diagram for unitality (left), the triangles representing the left and right
unit laws are pasted together along the singleton path [𝑓]. In the diagram for
associativity (right), each of the two composition triangles is whiskered by an
arrow (ℎ and 𝑓 , respectively), and the resulting diagrams are pasted together
along the shared path [𝑓 , 𝑔 , ℎ].
In the graphical language of diagrams, any vertex labeled by an object may
be duplicated and the two copies joined by an edge labeled by the respective
identity morphism. Conversely, any edge labeled by an identity morphism may
be collapsed, identifying the two vertices at its boundary, which are necessarily
labeled by the same object.

Except for the sake of emphasis, we generally omit composite arrows (including
identitites, which are nullary composites) when drawing diagrams, because their
existence may always be inferred. Notice that the associative law for composi-
tion is built into the graphical language of diagrams by the fact that there is no
graphical representation for the bracketing of the arrows in a path.

In order to avoid gratuitously naming objects in diagrams, we will represent an
anonymous object as a dot (“•”). Two such dots occurring in a diagram need
not represent the same object.

1.3 Structured Sets as Categories

1.3.1 Discrete Categories

The most trivial possible category has nothing in it. It is called the empty
category, and written “𝟘”. Despite having completely uninteresting structure,
we will see that this category nevertheless has a very interesting property.

Only slightly less trivially, we can consider a category with just a single object,
call it “⋆”, and no arrows other than the required identity. This describes a
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singleton category, typically written “𝟙”. This category will turn out to have
a very interesting property as well.

Generalizing a bit, we can regard any set as a category. As a category, a set
has its members as objects and no arrows other than the required identities.
Categories in which all arrows are identities are called discrete.

1.3.2 Preorder Categories

A preorder is a reflexive and transitive binary relation on a set, typically writ-
ten “– ≤ –”. We can interpret a preordered set (P, ≤) as a preorder category
ℙ in the following way.

objects: ℙ0 ≔ P

arrows: ℙ (𝑥 → 𝑦) ≔ {{𝑥 ≤ 𝑦} if 𝑥 ≤ 𝑦
∅ otherwise

identities: id(𝑥) ≔ 𝑥 ≤ 𝑥
composition: 𝑥 ≤ 𝑦 ⋅ 𝑦 ≤ 𝑧 ≔ 𝑥 ≤ 𝑧
In other words, a preordered set is a category in which each hom collection is
either empty, or else a singleton; and a hom is inhabited just in case its domain
is less than or equal to its codomain according to the order relation.
Remark 1.3.2.1 A preorder need not have anything to do with our usual notion
of order on a set. For example, the integers with the “divides” relation, – | –,
is a perfectly good preordered set, in which −2 ≤ 2, but also 2 ≤ −2 (and yet
−2 ≠ 2 – a preorder need not be antisymmetric).

In a preorder category the unit and associative laws of composition are trivially
satisfied by the fact that all elements of a singleton or empty set are equal. In
fact, every diagram in a preorder category must commute! Preorder categories
are sometimes called “thin”.

The simplest preorder category that is not discrete has two distinct objects and
a single non-identity arrow from one to the other. It looks like this:

• •

This category is called the interval category, and written “𝕀”. It plays an
important role in the study of higher-dimensional categorical structures.

1.3.3 Monoid Categories

A monoid is a set M together with an associative binary operation “– ∗ –” with
neutral element “ε”. We can interpret a monoid (M,∗,ε) as a monoid category



8 CHAPTER 1. BASIC CATEGORIES

𝕄 in the following way.

objects: 𝕄0 ≔ {⋆}
arrows: 𝕄 (⋆ → ⋆) ≔ M
identities: id(⋆) ≔ ε
composition: 𝑥 ⋅ 𝑦 ≔ 𝑥 ∗ 𝑦
Thus, a monoid becomes a category by “suspending” its elements into the hom
of endomorphisms of an anonymous object, which I imagine looks something
like this:

⋆𝑥

𝑦

𝑧

⋯

The unit and associative laws of composition are satisfied by the corresponding
laws for the monoid operation.

If we wanted to make the simplest possible monoid category that is not discrete,
we would have to think about what it means to be simple. We can begin
by postulating a single non-identity arrow, 𝑠 ∶ ⋆ → ⋆. But because 𝑠 is an
endomorphism, we must say what 𝑠 ⋅ 𝑠, 𝑠 ⋅ 𝑠 ⋅ 𝑠, and in general, 𝑠(𝑛) are. One
possibility is to introduce no relations. This gives us the free monoid on one
generator, better known as (ℕ , + , 0).

1.4 Categories of Structured Sets

In addition to (structured) sets as categories, we also have categories of (struc-
tured) sets.

1.4.1 The Category of Sets

There is a category of sets, called “Set”, whose objects are sets and whose
arrows are functions between them. Not surprisingly, we take function com-
position for the composition of arrows and identity functions for the identity
arrows. That is, given composable functions 𝑓 and 𝑔,

𝑓 ⋅ 𝑔 ≔ λ 𝑥 . 𝑔(𝑓(𝑥)) and id ≔ λ 𝑥 . 𝑥

Composition of Set-morphisms is associative and unital precisely because com-
position of functions is (check this!).
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1.4.2 The Category of Preorders

There is a category of preorders, called “PreOrd”, that has preordered sets as
objects and monotone (i.e. order-preserving) functions as arrows. Arrow com-
position is again function composition and the identity arrows are the identity
functions.

In order to conclude that this is a category we (i.e. you) must check that the
composition of monotone functions is again monotone, and that identity func-
tions are monotone. You just checked that function composition is associative
and has identity functions as units, so since monotone functions are functions,
you need not check associativity and unitality again for the special case.

1.4.3 The Category of Monoids

The category of monoids, Mon, has monoids as objects and monoid homo-
morphisms as arrows. A monoid homomorphism is a function between the
underlying sets of the monoids that respects the operations and units:

𝑓 ∶ Mon ((M , ∗ , ε) → (N , ∗′ , ε′)) ≔ 𝑓 ∶ Set (M → N)
such that 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ∗′ 𝑓(𝑦) and 𝑓(ε) = ε′

Abstract algebra provides a rich source of categories. These categories gener-
ally have sets with some form of algebraic structure as objects and structure-
preserving functions as arrows. In addition to that of monoids, we have the
category of groups (Grp), of rings (Rng), of modules over a ring, and so on.

1.5 Categories of Types and Terms

Although we are not yet in a position to give the details, we can begin to see
how to use categories to interpret type theories. The objects of such categories
will be interpretations of types – and more generally, of typing contexts. The
arrows will be interpretations of terms-in-context, which we will usually abbre-
viate to “terms”. We will interpret a term-in-context as a morphism from the
interpretation of its context to that of its type:

⟦Γ ⊢ M ∶ A⟧ ∶ ⟦Γ⟧ → ⟦A⟧

when confusion is unlikely to result, we will abbreviate this to “⟦M⟧ ∶ ⟦Γ⟧ →
⟦A⟧”, since the context and type are recoverable from the arrow boundary.

We must postpone interpreting type and context formation until we have built
up some more categorical machinery. So we temporarily restrict our attention
to theories with only atomic types and where all contexts are singletons. We
refer to this informally as “baby type theory”.
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There, we expect the following variable rule to be admissible:

𝑥 ∶ A ⊢ 𝑥 ∶ A
𝑣𝑎𝑟

and we want to interpret a variable-in-singleton-context as an identity mor-
phism:

⟦𝑥 ∶ A ⊢ 𝑥 ∶ A⟧ = id(⟦A⟧) ∶ ⟦A⟧ → ⟦A⟧

Likewise, we expect the following substitution rule to be admissible:
𝑥 ∶ A ⊢ M ∶ B 𝑦 ∶ B ⊢ N ∶ C

𝑥 ∶ A ⊢ N[𝑦↦M] ∶ C 𝑠𝑢𝑏

and we want to interpret the substitution of a term for a variable in a term as
the composition of the respective terms:

⟦N[𝑦↦M]⟧ = ⟦M⟧ ⋅ ⟦N⟧ ∶ ⟦A⟧ → ⟦C⟧

In order to know that this is sound, we must check that the interpretation
respects term equality.

unit laws There are two substitutions we can perform where one of the terms
is a variable, namely, M[𝑥↦𝑥] and 𝑦[𝑦↦M]. By the definition of substi-
tution, both terms are equal to M itself. Our interpretation is compatible
with this fact by the respective composition unit laws:

⟦𝑥 ∶ A ⊢ M[𝑥↦𝑥]⏟
M

∶ B⟧ = ⟦𝑥 ∶ A ⊢ 𝑥 ∶ A⟧⏟⏟⏟⏟⏟⏟⏟
id(⟦A⟧)

⋅⟦𝑥 ∶ A ⊢ M ∶ B⟧

⟦𝑥 ∶ A ⊢ 𝑦[𝑦↦M]⏟
M

∶ B⟧ = ⟦𝑥 ∶ A ⊢ M ∶ B⟧ ⋅ ⟦𝑦 ∶ B ⊢ 𝑦 ∶ B⟧⏟⏟⏟⏟⏟⏟⏟
id(⟦B⟧)

associative law Likewise, there are two ways of using substitution to reduce
the three terms

𝑥 ∶ A ⊢ M ∶ B , 𝑦 ∶ B ⊢ N ∶ C , 𝑧 ∶ C ⊢ P ∶ D
to a single term, namely, P[𝑧↦N[𝑦↦M]] and P[𝑧↦N][𝑦↦M]. By the defi-
nition of substitution, these are the same term in baby type theory (why?).
Our interpretation is compatible with this fact since:

⟦P[𝑧↦N[𝑦↦M]]⟧
= ⟦N[𝑦↦M]⟧ ⋅ ⟦P⟧
= (⟦M⟧ ⋅ ⟦N⟧) ⋅ ⟦P⟧
= ⟦M⟧ ⋅ (⟦N⟧ ⋅ ⟦P⟧)
= ⟦M⟧ ⋅ ⟦P[𝑧↦N]⟧
= ⟦P[𝑧↦N][𝑦↦M]⟧

Indeed, this categorical semantics is sound for baby type theory.
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1.6 Categories of Categories

We have interpreted some (hopefully) familiar mathematical structures (sets,
preordered sets, monoids) as categories, but we have also described categories
of these structures (Set, PreOrd, Mon). So these are in fact categories of
categories! In each case, the objects comprise a sort of structured collection,
and the arrows a mapping between these that respects the relevant structure.

Since categories themselves comprise a sort of structured collection, we may
wonder whether we can identify a reasonable notion of arrow between categories,
and thus define general categories of categories. Indeed we can, so long as we
heed a broad foundational restriction and avoid allowing a category of categories
to be an element of itself. Otherwise, we leave ourselves open to paradoxes.

1.6.1 Functors

Recall that a category has collections of objects and arrows, together with an
(associative and unital) composition structure. It is precisely this composition
structure that we want an arrow between categories to preserve.
Definition 1.6.1.1 (functor) Given two categories ℂ and 𝔻, a functor F with
domain ℂ and codomain 𝔻 consists of:

• an object map, F0 ∶ ℂ0 → 𝔻0,

• an arrow map, F1 ∶ ℂ1 → 𝔻1,
which respects the boundaries of arrows:

𝑓 ∶ ℂ (A → B) ⟼ F1(𝑓) ∶ 𝔻(F0(A) → F0(B))

and which furthermore respects the composition structure:

nullary composition: F1(id(A)) = id(F0(A))
binary composition: F1(𝑓 ⋅ 𝑔) = F1(𝑓) ⋅ F1(𝑔)

It is customary to drop the dimension subscripts on the constituent maps of
a functor. We can represent the composition structure-preserving aspect of a
functor diagrammatically as follows:

ℂ F⟶ 𝔻

A A
id F⟼ F(A) F(A)

id

B

A C

𝑓 𝑔

𝑓 ⋅ 𝑔

F⟼
F(B)

F(A) F(C)

F(𝑓) F(𝑔)

F(𝑓 ⋅ 𝑔)
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Equivalently, we could take the unbiased point of view and say that a func-
tor respects the composition of arbitrary paths of arrows. As a consequence,
functors must respect the commuting of diagrams: a functor image of a com-
muting diagram in its domain category is a commuting diagram in its codomain
category.

Functors provide a notion of morphism of categories, so we can ask about their
composition structure as well.
Definition 1.6.1.2 (identity functor) Given any category ℂ we define the iden-
tity functor on ℂ, id(ℂ) ∶ ℂ → ℂ, comprising identity maps on both objects
and arrows:

(id(ℂ))0 ≔ id(ℂ0) and (id(ℂ))1 ≔ id(ℂ1)

An identity functor takes an arrow, including its boundary, to itself:

A A

B B

𝑓 𝑓

idℂ ∶ ℂ ∶

Definition 1.6.1.3 (functor composition) Given functors F from ℂ to 𝔻 and G
from 𝔻 to 𝔼, we define the composition F ⋅ G from ℂ to 𝔼, using the respective
compositions on its object and arrow maps:

(F ⋅ G)0 ≔ F0 ⋅ G0 and (F ⋅ G)1 ≔ F1 ⋅ G1

That is:

A F(A) G(F(A))

B F(B) G(F(B))

𝑓 F(𝑓) G(F(𝑓))

F Gℂ ∶ 𝔻 ∶ 𝔼 ∶

Lemma 1.6.1.4 (categories of categories) Given a collection of categories and
functors between them, we can form the category having:

• the categories as objects

• paths in the functors as arrows

• identity functors as identity arrows

• functor composition as arrow composition

It is easy to check that the associative and unit laws of composition are satisfied.
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Functors are morphisms in categories whose objects are themselves categories.
They are structure-preserving maps, where the structure in question is the com-
position structure of a category.
Exercise 1.6.1.5 What is a functor:

• between discrete categories?

• between preorder categories?

• between monoid categories?
Example 1.6.1.6 (forgetful functors) For a category of structured sets (e.g.
monoids, groups, rings or topological spaces) there is a forgetful functor to the
category of sets, which disregards the structure and retains just the underlying
set.

For instance, there is a forgetful functor U ∶ Mon → Set that maps the monoid
(ℕ , + , 0) to the set ℕ, and maps the monoid inclusion (ℕ , + , 0) ↪ (ℤ , + , 0)
to the set inclusion ℕ ↪ ℤ.

For any A , B ∶ ℂ, we can consider the restriction of a functor F ∶ ℂ → 𝔻 to the
hom ℂ (A → B):

F1 |ℂ (A→B) ∶ ℂ (A → B) → 𝔻 (F0(A) → F0(B))

The functor is called full if all such restrictions are surjective maps, that is, if

∀ A , B ∶ ℂ . F1 |ℂ (A→B) is surjective

It is faithful if all such restrictions are injective maps, that is, if

∀ A , B ∶ ℂ . F1 |ℂ (A→B) is injective

Exercise 1.6.1.7

• For a functor F ∶ ℂ → 𝔻, how is F being full different from F1 ∶ ℂ1 → 𝔻1
being surjective?

• How is F being faithful different from F1 ∶ ℂ1 → 𝔻1 being injective?

• Is the forgetful functor from example 1.6.1.6 full? Is it faithful?

1.6.2 The Special Role of Sets

A collection is called “small” if it is a set. A category is called small if its
collection of arrows – and hence, of objects – is small. There is a category
of small categories and functors between them, called “Cat”. Observe that
it is not the case that Cat ∶ Cat, because Cat0 contains all the small discrete
categories, i.e. the sets, and this collection is already too large to be a set.
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Often we don’t care whether a category is (globally) small, but only that each
of its hom collections is. A category is called locally small if for any pair of its
objects, A , B ∶ ℂ, the collection of arrows, ℂ (A → B) is small. Many categories
of interest are locally small. In particular, Set and Cat are locally small (if you
know some basic set theory, try to work out why).

Unless otherwise specified, the categories that we encounter in this course will
be locally small. Thus, we will stop being coy about what sort of “collection” a
hom is, and refer instead to hom sets.

The fact that the collections of parallel arrows in a locally small category are
sets puts the category Set in a privileged position. For example, if we fix an
object X ∶ ℂ, then we can define a function that, given any object A ∶ ℂ, returns
the set of arrows ℂ (X → A). This function extends to a functor:
Lemma 1.6.2.1 (representable functors) For each object of a locally small cat-
egory, X ∶ ℂ, there is a functor, known as a representable functor,

ℂ (X → –)
ℂ ⟶ Set
A ⟼ ℂ (X → A)

𝑓 ∶ A → B ⟼ ℂ (X → 𝑓) ≔ – ⋅ 𝑓 ∶ ℂ (X → A) → ℂ (X → B)

Unpacking this, it says that “ℂ (X → –)” is the name of a functor from ℂ to Set,
that maps an object A ∶ ℂ to the set of arrows, ℂ (X → A), and maps an arrow
𝑓 ∶ ℂ (A → B) to the function that post-composes 𝑓 to any arrow in ℂ (X → A),
yielding an arrow in ℂ (X → B). The notation “– ⋅ 𝑓” is just syntactic sugar for
λ (𝑎 ∶ X → A) . 𝑎 ⋅ 𝑓 . The object X ∶ ℂ is known as the “representing object” of
this functor.

Proof. In order to show that ℂ (X → –) is indeed a functor we must confirm
that it preserves the composition structure:

nullary composition The idea is that post-composing an identity arrow does
nothing, that is, it applies the identity function to the hom set. For A ∶ ℂ:

ℂ (X → id(A))
= [definition of representable functor]

λ 𝑎 . 𝑎 ⋅ id(A)
= [composition unit law]

λ 𝑎 . 𝑎
= [definition of identity function]

id(ℂ (X → A))

binary composition Here, the idea is that post-composing a composite of ar-
rows post-composes the first, and then post-composes the second to the
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result, that is, it composes the post-compositions. For 𝑓 ∶ ℂ (A → B) and
𝑔 ∶ ℂ (B → C):

ℂ (X → 𝑓 ⋅ 𝑔)
= [definition of representable functor]

λ 𝑎 . 𝑎 ⋅ 𝑓 ⋅ 𝑔
= [β-expansion]

λ 𝑎 . (λ 𝑏 . 𝑏 ⋅ 𝑔)(𝑎 ⋅ 𝑓)
= [β-expansion]

λ 𝑎 . (λ 𝑏 . 𝑏 ⋅ 𝑔)((λ 𝑎 . 𝑎 ⋅ 𝑓)(𝑎))
= [definition of function composition]

(λ 𝑎 . 𝑎 ⋅ 𝑓) ⋅ (λ 𝑏 . 𝑏 ⋅ 𝑔)
= [definition of representable functor]

ℂ (X → 𝑓) ⋅ ℂ (X → 𝑔)

Because of the special role of the category of sets, the study of representable
functors provides one of several, ultimately equivalent, ways of understanding
categories. Due to our choice of emphasis and time constraints, it is not the one
we will pursue here, but it is worth being aware of.

1.7 New Categories from Old

Now that we have met a few categories, let’s look at some ways to create new
categories out of them.

1.7.1 Ordered Pair Categories

Recall that given any two sets, we can for their set of ordered pairs:

A × B ≔ {(𝑎 , 𝑏) | 𝑎 ∈ A and 𝑏 ∈ B}

Likewise, given any two categories, we can construct a new category whose
constituent parts are just ordered pairs of the respective parts of the given
categories.
Definition 1.7.1.1 (ordered pair category) For categories ℂ and 𝔻, the ordered
pair category ℂ × 𝔻 has the following structure:

objects: (A , X) for A ∶ ℂ and X ∶ 𝔻
arrows: (𝑓 , 𝑝) for 𝑓 ∶∶ ℂ and 𝑝 ∶∶ 𝔻,

with ∂𝑖((𝑓 , 𝑝)) ≔ (∂𝑖(𝑓) , ∂𝑖(𝑝))
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identities: id((A , X)) ≔ (id(A) , id(X))
composition: (𝑓 , 𝑝) ⋅ (𝑔 , 𝑞) ≔ (𝑓 ⋅ 𝑔 , 𝑝 ⋅ 𝑞)
Soon we will be in a position to prove that ordered pair categories have the
universal property of a categorical product, and we can use that property to
define functors into them. But we will want to define functors out of them as
well. Such a functor, whose domain is an ordered pair of categories, is called a
bifunctor. For defining bifunctors, the following lemma is very helpful:
Lemma 1.7.1.2 (bifunctor lemma) Given categories ℂ , 𝔻 , 𝔼, an object map,
F0 ∶ ℂ0 × 𝔻0 → 𝔼0 and a boundary-respecting arrow map, F1 ∶ ℂ1 × 𝔻1 → 𝔼1,
the pair (F0 , F1) constitutes a functor F ∶ ℂ × 𝔻 → 𝔼 just in case:

(i) F is a functor in each argument separately:

∀ A ∶ ℂ . F(A , –) ∶ 𝔻 → 𝔼 is a functor
∀ X ∶ 𝔻 . F(– , X) ∶ ℂ → 𝔼 is a functor

(ii) and for arrows 𝑓 ∶ ℂ (A → B) , 𝑝 ∶ 𝔻 (X → Y) we have the interchange
property:

F(𝑓 , X) ⋅ F(B , 𝑝) = F(A , 𝑝) ⋅ F(𝑓 , Y)

(Note the use of dimensional promotion.)

Proof. First we must show that if F is a bifunctor then the two conditions hold.

Condition (i) follows immediately by fixing the respective arrows to be identities.
Next, observe that in the category ℂ × 𝔻, the following diagram commutes:

(A , X)

(B , X) (A , Y)

(B , Y)

(𝑓 , X) (A , 𝑝)

(B , 𝑝) (𝑓 , Y)

(𝑓 , 𝑝)

Condition (ii) then follows because functors preserve commuting diagrams.

Going the other way, using condition (ii) we may define F(𝑓 , 𝑝) to be this
common arrow. Now we must show that F defined this way respects composition
structure.

nullary composition In the diagram below, condition (i) ensures that each
solid arrow is a functor image of an identity arrow, thus itself an identity
arrow. So the diamond commutes to id(F(A , X)). Further, the diamond
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has the form described in condition (ii), so the defined map, F(id , id), is
indeed the identity.

F(A , X)

F(A , X) F(A , X)

F(A , X)

F(id , X) F(A , id)

F(A , id) F(id , X)

F(id , id)

binary composition In the diagram below, each of the four diamonds com-
mutes by condition (ii), giving us the defined maps F(𝑓 , 𝑝) and F(𝑔 , 𝑞) as
shown. By condition (i) each of the four outer triangles commutes, so by
condition (ii) we have the defined map F(𝑓 ⋅ 𝑔 , 𝑝 ⋅ 𝑞) ∶ F(A , X) → F(C , Z).
By pasting, the whole diagram commutes, so F preserves composites as
desired.

F(A , X)

F(B , X) F(A , Y)

F(C , X) F(B , Y) F(A , Z)

F(C , Y) F(B , Z)

F(C , Z)

F(𝑓 ⋅ 𝑔 , X) F(A , 𝑝 ⋅ 𝑞)

F(C , 𝑝 ⋅ 𝑞) F(𝑓 ⋅ 𝑔 , Z)

F(𝑓 , X) F(A , 𝑝)

F(B , 𝑝) F(𝑓 , Y)

F(𝑓 , 𝑝)

F(𝑔 , Y) F(B , 𝑞)

F(C , 𝑞) F(𝑔 , Z)
F(𝑔 , 𝑞)

F(𝑔 , X)

F(C , 𝑝)

F(A , 𝑞)

F(𝑝 , Z)

1.7.2 Subcategories

Just as we may restrict our attention to a subset of a given set, we may single
out a substructure of a category as well. However, since a category has more
structure than a set, we must ensure that the substructure in question remains
a category.
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Definition 1.7.2.1 (subcategory) Given a category ℂ, we may take a subcat-
egory 𝔻 of ℂ, written “𝔻 ⊆ ℂ” by taking for 𝔻0 a subcollection of ℂ0 and for
𝔻1 a subcollection of ℂ1, subject to the restrictions:

• if 𝑓 ∶∶ ℂ is in 𝔻1 then ∂−(𝑓) and ∂+(𝑓) are in 𝔻0.

• if 𝑓 , 𝑔 ∶∶ ℂ are in 𝔻1 and are composable in ℂ then 𝑓 ⋅ 𝑔 is in 𝔻1.

• if A ∶ ℂ is in 𝔻0 then id(A) is in 𝔻1.

The composition structure of arrows when interpreted in 𝔻 is the same as in ℂ.

The restrictions are necessary to ensure that the subcollections of ℂ0 and ℂ1 we
choose do, in fact, form a category.

Whenever we have a subcategory 𝔻 ⊆ ℂ, we have also an inclusion functor
𝑖 ∶ 𝔻 → ℂ, written “𝔻 ↪ ℂ”, sending each object and arrow of 𝔻 to itself, but
now viewed as an object or arrow of ℂ.

1.7.3 Opposite Categories

Recall that each arrow in a category has two boundary objects, its domain and
codomain. Systematically swapping these gives rise to an involutive relation on
categories.
Definition 1.7.3.1 (opposite category) To any category ℂ, there corresponds
an opposite category, ℂ° (pronounced “ℂ-op”), having:

objects: ℂ°0 ≔ ℂ0

arrows: ℂ° (A → B) ≔ ℂ (B → A)
identities: id(A) ∶∶ ℂ° ≔ id(A) ∶∶ ℂ
composition: 𝑓 ⋅ 𝑔 ∶∶ ℂ° ≔ 𝑔 ⋅ 𝑓 ∶∶ ℂ
Exercise 1.7.3.2 Check that an opposite category satisfies the unit and asso-
ciative laws of composition, and that the opposite of an opposite category is
just the original category.

Despite being simple and purely formal, the opposite category construction is
very useful. Because it is an involution (for any category ℂ, we have that
(ℂ°)° = ℂ), op is called a duality.

For any construction that we may perform in a given category, we can view
it from the perspective of the opposite category instead. this determines a
dual construction. In some cases a construction and its dual may arise within
the same category and interact in interesting ways (as, for example with the
distributive law).

Furthermore, for any proposition that we may state about a given category,
there is a dual proposition about its opposite category that is true just in
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case the first proposition is true of the original category. This gives us dual
theorems for free: in category theory theorems are always two for the proof of
one!

Functors respect the op duality in the sense that whenever we have a functor
F ∶ ℂ → 𝔻, we automatically also have the functor F° ∶ ℂ° → 𝔻°. F° is really
just the same functor as F, it merely lets the categories on its boundary imagine
that their arrows are going the other way round.

A functor F ∶ ℂ° → 𝔻 is called a contravariant functor from ℂ to 𝔻. Among
the most important contravariant functors one encounters are the contravariant
representable functors:
Lemma 1.7.3.3 (contravariant representable functors) For each object of a
locally small category, X ∶ ℂ, there is a functor,

ℂ (– → X)
ℂ° ⟶ Set
A ⟼ ℂ (A → X)

𝑓 ∶ A → B ⟼ ℂ (𝑓 → X) ≔ 𝑓 ⋅ – ∶ ℂ (B → X) → ℂ (A → X)

This is just an ordinary representable functor on the opposite category: ℂ (– →
X) = ℂ° (X → –), because pre-composition in ℂ is the same thing as post-
composition in ℂ°. For reasons that we won’t dwell on, a contravariant repre-
sentable functor is also known as a representable presheaf .
Exercise 1.7.3.4 (hom bifunctor) Use the bifunctor lemma and the definitions
of covariant and contravariant representable functors to define a hom bifunctor
for locally small categories:

ℂ (0– → 1–) ∶ ℂ° × ℂ → Set

1.7.4 Arrow Categories

Definition 1.7.4.1 (arrow category) Given a category ℂ, we may derive from it
another category, “ℂ→”, known as the arrow category of ℂ with the following
structure:

objects: ℂ→
0 ≔ ℂ1

arrows: ℂ→ (𝑓 → 𝑔) ≔ {(𝑖 , 𝑗) | 𝑖 ∶ ℂ (∂−(𝑓) → ∂−(𝑔)) and 𝑗 ∶ ℂ (∂+(𝑓) →
∂+(𝑔)) such that 𝑖 ⋅ 𝑔 = 𝑓 ⋅ 𝑗}

identities: id(𝑓) ≔ (id(∂−(𝑓)) , id(∂+(𝑓)))
composition: (𝑖 , 𝑗) ⋅ (𝑘 , 𝑙) ≔ (𝑖 ⋅ 𝑘 , 𝑗 ⋅ 𝑙)
In a bit more detail, the objects of ℂ→ are the arrows of ℂ. Given ℂ→-objects,
𝑓 ∶ ℂ (A → B) and 𝑔 ∶ ℂ (C → D), a ℂ→-arrow from 𝑓 to 𝑔 is a pair of ℂ-arrows,
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𝑖 ∶ ℂ (A → C) and 𝑗 ∶ ℂ (B → D) that form a commuting square with 𝑓 and 𝑔
in ℂ:

A C

B D
𝑓 𝑔

𝑖

𝑗

(1.1)

Identity ℂ→-arrows are the commuting ℂ-squares with two opposite sides the
same arrow and the other two opposite sides identity arrows. Composition in
ℂ→ is the pasting of commuting squares in ℂ:

A A

B B
𝑓 𝑓

id

id

A C E

B D F
𝑓 𝑔 ℎ

𝑖

𝑗

𝑘

𝑙

The unit and associative laws of composition are satisfied in ℂ→ as a consequence
of their holding in ℂ (you should check this). So the arrows of ℂ→ are the
commuting squares of ℂ (with each commuting ℂ-square represented twice).
This tells us something about the 2-dimensional structure of ℂ, namely, which
of its squares commute.

We can iterate this construction to explore yet higher-dimensional structure
of ℂ. One dimension up, the category (ℂ→)→ has as objects ℂ→-arrows (i.e.
ℂ-commuting squares) and as arrows ℂ→-commuting squares. Let’s see what
these ought to be. A nice way to think about it is to take diagram (1.1) and
imagine that it’s actually a 3-dimensional cube that we happen to be seeing
orthographically along one face. If we shift our perspective slightly, we will see
the following:

•

•

•

•

•

•

•

•

𝑓0 𝑔0

𝑖0

𝑗0

𝑓1 𝑔1

𝑖1

𝑗1

𝑎

𝑏

𝑐

𝑑

(1.2)

We begin with (ℂ→)→-objects 𝑓 and 𝑔, which are actually the ℂ→-arrows from 𝑎
to 𝑏 and from 𝑐 to 𝑑, respectively. These, in turn, are the ℂ-commuting squares
shown on the left and right of diagram (1.2). Now (ℂ→)→-arrows between these
will be ℂ→-arrows between their domains and codomains, 𝑖 and 𝑗, which are
the ℂ-commuting squares shown on the top and bottom. But there is also the
condition that 𝑖⋅𝑔 = 𝑓 ⋅𝑗 in ℂ→. Composition in ℂ→ is pasting in ℂ, and equality
of arrows in ℂ→ is just pairwise equality in ℂ. So we need that 𝑖0 ⋅𝑔0 = 𝑓0 ⋅𝑗0 and
𝑖1 ⋅ 𝑔1 = 𝑓1 ⋅ 𝑗1 in ℂ, making the back and front faces commute. In other words,
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the top and bottom commuting ℂ-squares form a (ℂ→)→-arrow between the
left and right commuting ℂ-squares just in case the front and back ℂ-squares
commute as well. Then all the paths shown in diagram (1.2) commute. So
(ℂ→)→-arrows are ℂ-commuting cubes.

The arrow category construction provides us with three important functors, that
in a sense “mediate between dimensions”. These are the domain, reflexivity
and codomain functors:

𝑑𝑜𝑚
ℂ→ ⟶ ℂ

𝑓 ∶∶ ℂ ⟼ ∂−(𝑓)
(𝑖 , 𝑗) ⟼ 𝑖

𝑟𝑒𝑓𝑙
ℂ ⟶ ℂ→

A ⟼ id(A)
𝑓 ⟼ (𝑓 , 𝑓)

𝑐𝑜𝑑
ℂ→ ⟶ ℂ

𝑓 ∶∶ ℂ ⟼ ∂+(𝑓)
(𝑖 , 𝑗) ⟼ 𝑗

We will see later that these functors play an important role in the higher-
dimensional structure of categories, but for now we will use the codomain functor
to construct another important new category from old.

1.7.5 Slice Categories

Definition 1.7.5.1 (slice category) Given a category ℂ and object A ∶ ℂ, there
is a category, “ℂ/A” called the slice category of ℂ over A, with the following
structure:

objects: (ℂ/A)0 ≔ {𝑥 ∶∶ ℂ | ∂+(𝑥) = A}
arrows: ℂ/A (𝑥 → 𝑦) ≔ {𝑝 ∶ ℂ (∂−(𝑥) → ∂−(𝑦)) | 𝑝 ⋅ 𝑦 = 𝑥}
Identities and composition are inherited from ℂ.

The slice category ℂ/A is a subcategory of the arrow category ℂ→. It contains
just those objects and arrows that the 𝑐𝑜𝑑 functor sends to A and to id(A),
respectively.

I imagine the arrows of ℂ/A as the bases of inverted triangles with their vertices
anchored at A:

X Y

A
𝑥 𝑦

𝑝

Composing the sides of such triangles with an arrow 𝑓 ∶ A → B lets us move
the anchor to B:

X Y X Y

A B
𝑓

𝑥 𝑦

𝑝

𝑥 ⋅ 𝑓 𝑦 ⋅ 𝑓

𝑝
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Lemma 1.7.5.2 (post-composition functor) Every arrow 𝑓 ∶ ℂ (A → B) deter-
mines a functor:

𝑓!
ℂ/A ⟶ ℂ/B

𝑥 ∶ ℂ (X → A) ⟼ 𝑥 ⋅ 𝑓
𝑝 ∶ ℂ (X → Y) ⟼ 𝑝



Chapter 2

Behavioral Reasoning

A fundamental question we must address when studying any kind of formal
system is when two objects with distinct presentations should be considered to
be essentially the same. We can ask this question about sets, groups, topological
spaces, λ-terms, and even categories.

Certainly, whatever relation we choose should be an equivalence relation and
should be a congruence for certain operations, but beyond that, general guide-
lines are hard to come by.

For example, we consider two sets to be essentially the same if there is a bijec-
tion between them, that is, if there is an injective and surjective function from
one to the other. Recall that a function 𝑝 ∶ X → Y is injective if it “doesn’t
collapse any elements of its domain”:

∀ 𝑥0 , 𝑥1 ∈ X . 𝑝(𝑥0) = 𝑝(𝑥1) ⊃ 𝑥0 = 𝑥1

and is surjective if it “doesn’t miss any elements of its codomain”:

∀ 𝑦 ∈ Y . ∃ 𝑥 ∈ X . 𝑝(𝑥) = 𝑦

We can’t translate such element-wise definitions directly to the language of
categories because the objects of a category need not be structured sets, so we
must find equivalent behavioral characterizations.

2.1 Monic and Epic Morphisms

2.1.1 Monomorphisms

In the case of injections, we can do this by rephrasing the property so that
rather than discussing the image under 𝑝 of two points of X, we instead discuss

23



24 CHAPTER 2. BEHAVIORAL REASONING

the composition with 𝑝 of two parallel functions into X. If 𝑝 is injective then:

∀ 𝑓 , 𝑔 ∶ W → X . ∀ 𝑤 ∈ W . (𝑝 ∘ 𝑓)(𝑤) = (𝑝 ∘ 𝑔)(𝑤) ⊃ 𝑓(𝑤) = 𝑔(𝑤)

Universal quantification distributes over implication, i.e. if ∀𝑎 ∶ A . φ 𝑎 ⊃ ψ 𝑎
then (∀𝑎 ∶ A . φ 𝑎) ⊃ (∀𝑎 ∶ A . ψ 𝑎). Thus if 𝑝 is injective then:

∀ 𝑓 ,𝑔 ∶ W → X . (∀ 𝑤 ∈ W . (𝑝∘𝑓)(𝑤) = (𝑝∘𝑔)(𝑤)) ⊃ (∀ 𝑤 ∈ W . 𝑓(𝑤) = 𝑔(𝑤))

It may seem that we’ve just made things worse by introducing two extraneous
functions, but now we can use the fact that two functions are equal just in
case they agree on all points to rephrase this again, doing away with the points
entirely. So if 𝑝 is injective then:

∀ 𝑓 , 𝑔 ∶ W → X . 𝑓 ⋅ 𝑝 = 𝑔 ⋅ 𝑝 ⊃ 𝑓 = 𝑔

This is a behavioral characterization that can be stated for any category.
Definition 2.1.1.1 (monomorphism) An arrow 𝑚 ∶∶ ℂ is a monomorphism
(or “monic”) if it is post-cancelable; that is, if for any arrows 𝑓 , 𝑔 ∶∶ ℂ,

𝑓 ⋅ 𝑚 = 𝑔 ⋅ 𝑚 implies 𝑓 = 𝑔

Notice that we are being a bit economical here: in order for 𝑓 and 𝑔 to be
composable with 𝑚, they must be coterminal, and in order for their composites
with 𝑚 to be equal, they must also be coinitial. So the implication is applicable
only to parallel 𝑓 and 𝑔 composable with 𝑚, but all that can be inferred.

In diagrams, monomorphisms are conventionally drawn with a tailed arrow:
“↣”.
Lemma 2.1.1.2 (monics and composition)

• Identity morphisms are monic.

• Composites of monics are monic.

• If the composite 𝑚 ⋅ 𝑛 is monic then so is 𝑚.

Proof.

𝑓 ⋅ id = 𝑔 ⋅ id
⇒ [unit law]

𝑓 = 𝑔

𝑓 ⋅ 𝑚 ⋅ 𝑛 = 𝑔 ⋅ 𝑚 ⋅ 𝑛
⇒ [𝑛 is monic]

𝑓 ⋅ 𝑚 = 𝑔 ⋅ 𝑚
⇒ [𝑚 is monic]

𝑓 = 𝑔

𝑓 ⋅ 𝑚 = 𝑔 ⋅ 𝑚
⇒ [whiskering]

𝑓 ⋅ 𝑚 ⋅ 𝑛 = 𝑔 ⋅ 𝑚 ⋅ 𝑛
⇒ [𝑚 ⋅ 𝑛 is monic]

𝑓 = 𝑔
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Remark 2.1.1.3 (subobjects) If we take the subcategory of a slice category
containing just the monomorphisms then we get a preorder: given monics 𝑚,𝑛 ∶
ℂ/A, we say that 𝑚 ≤ 𝑛 just in case there is an 𝑓 ∶ ℂ/A (𝑚 → 𝑛).

M N

A
𝑚 𝑛

𝑓

Such an 𝑓 , if it exists, is unique because 𝑛 is monic, and is itself monic by the
preceding lemma.

The monics into an object behave very much like the partial order of subsets of
a set, in fact, they are known as (representatives of) subobjects. This is the
beginning of a branch of categorical logic known as topos theory, where sub-
objects are used to interpret predicates. However, using a preorder to interpret
the entailment relation on propositions sacrifices proof relevance: it lets us say
that one proposition entails another, but not why it does so.

2.1.2 Epimorphisms

Using the op duality, we can define the property dual to that of being monic.
You should check that this amounts to the following:
Definition 2.1.2.1 (epimorphism) An arrow 𝑒 ∶∶ ℂ is an epimorphism (or
“epic”) if it is pre-cancelable; that is, if for any arrows 𝑓 , 𝑔 ∶∶ ℂ,

𝑒 ⋅ 𝑓 = 𝑒 ⋅ 𝑔 implies 𝑓 = 𝑔

This corresponds to the fact that a surjective function doesn’t miss any points
in its codomain, so if 𝑝 ∶ X → Y is surjective then for any parallel 𝑓 , 𝑔 ∶ Y → Z,

(∀𝑥 ∈ X . (𝑓 ∘ 𝑝)(𝑥) = (𝑔 ∘ 𝑝)(𝑥)) ⊃ (∀𝑦 ∈ Y . 𝑓(𝑦) = 𝑔(𝑦))

Eliminating the points gives us the definition of epimorphism.

In diagrams, epimorphisms are conventionally drawn with a double-headed ar-
row: “↠”.
Exercise 2.1.2.2 State and prove the dual theorems to those in lemma 2.1.1.2.

In the category Set a function is injective just in case it is monic, and surjective
just in case it is epic. In many categories of “structured sets” (e.g. Mon) the
monomorphisms are exactly the injective homomorphisms. For instance, the
inclusion (ℕ , + , 0) ↪ (ℤ , + , 0) in the category Mon is a monomorphism.
It turns out to be an epimorphism as well, despite not being surjective on its
underlying set. So, unlike the situation in Set, in an arbitrary category the
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existence of a monic and epic morphism between two objects does not suffice to
ensure that they are essentially the same.

Monic and epic morphisms have other unsatisfactory properties, for example,
they are not necessarily preserved by functors (the existence of a forgetful functor
from monoids to sets, together with the last result implies this).

2.2 Split Monic and Epic Morphisms

Definition 2.2.0.1 (split monomorphism) An arrow 𝑠 is a split monomor-
phism (or “split monic”) if it is post-(semi-)invertible; that is, if there exists an
arrow 𝑟 such that 𝑠 ⋅ 𝑟 = id.

The dual notion is that of:
Definition 2.2.0.2 (split epimorphism) An arrow 𝑟 is a split epimorphism
(or “split epic”) if it is pre-(semi-)invertible; that is, if there exists an arrow 𝑠
such that 𝑠 ⋅ 𝑟 = id.

It would be perverse to name them this way unless split monics were monic and
split epics were epic, which indeed they are.
Lemma 2.2.0.3 A split monomorphism is a monomorphism (and a split epi-
morphism is an epimorphism).

Proof. Suppose 𝑠 is split-monic with 𝑠 ⋅ 𝑟 = id,

𝑓 ⋅ 𝑠 = 𝑔 ⋅ 𝑠
⟹ [whiskering]

𝑓 ⋅ 𝑠 ⋅ 𝑟 = 𝑔 ⋅ 𝑠 ⋅ 𝑟
⟹ [assumption]

𝑓 ⋅ id = 𝑔 ⋅ id
⟹ [unit law]

𝑓 = 𝑔

The other case is dual.

Because functors must preserve the composition structure of categories, they
must preserve split monics and epics as well.
Lemma 2.2.0.4 The functor-image of a split monic (split epic) is itself split
monic (split epic).
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Proof. Suppose 𝑠 is split-monic with 𝑠 ⋅ 𝑟 = id,

F(𝑠) ⋅ F(𝑟)
= [functors preserve composition]

F(𝑠 ⋅ 𝑟)
= [assumption]

F(id)
= [functors preserve identities]

id

So F(𝑠) is split-monic.

Before moving on, let’s consider a particularly pretty application of behavioral
reasoning to the axiom of choice. This proposition states that given a family of
non-empty sets, there is a function that chooses an element from each one.

We can represent any family of sets with an ordinary function in the following
way. Given a function 𝑓 ∶ Set (E → B), we can define a function,

𝑓∗

B ⟶ ℘(E) ↪ Set
𝑏 ⟼ {𝑒 ∈ E | 𝑓(𝑒) = 𝑏}

And given a family of sets, {E𝑏}𝑏∈B, which is just an map B → Set, we can
define a projection function ∫𝑏∈B E𝑏 → B mapping 𝑒 ∈ E𝑏 ⟼ 𝑏. These two
constructions are inverse, both the function 𝑓 ∶ E → B and the family of sets
{E𝑏}𝑏∈B just sort the elements of E by those in B:

B

E

B

℘(E)

● ● ●

● ● ● ● ●

𝑓 𝑓∗

The axiom of choice states that if for each 𝑏 ∈ B the set 𝑓∗(𝑏) is non-empty
then there is a way to choose from E a family of elements {𝑒𝑏}𝑏∈B such that
∀ 𝑏 ∈ B . 𝑓(𝑒𝑏) = 𝑏 – i.e. such that there is a function 𝑠 ∶ B → E with
𝑠 ⋅ 𝑓 = id(B). Notice that the condition that the sets 𝑓∗(𝑏) be non-empty is
equivalent to the requirement that 𝑓 be a surjection. So the axiom of choice
asserts that in the category Set, every epimorphism is split!

This is a behavioral characterization of a property that we may ask whether a
given category satisfies. For example, because the inclusion (ℕ,+,0) ↪ (ℤ,+,0)
is epic in the category Mon, it fails to hold there.
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2.3 Isomorphisms

When we have arrows 𝑠 ∶ A → B and 𝑟 ∶ B → A such that 𝑠 ⋅ 𝑟 = id(A) we say
that 𝑠 is a section of 𝑟 and that 𝑟 is a retraction of 𝑠. So being split monic
means having a retraction, and being split epic means having a section.
Lemma 2.3.0.1 If a morphism has both a section and a retraction then the
section and the retraction are equal.

Proof. Given arrow 𝑓 ∶ A → B with section 𝑠 and retraction 𝑟, by pasting,
𝑠 = 𝑟:

B A B A
𝑠

𝑓 𝑟

id

id

𝑠

𝑟

If 𝑓 ∶ A → B has section-and-retraction 𝑔, then 𝑔 ∶ B → A necessarily has
retraction-and-section 𝑓 . In other words, 𝑓 and 𝑔 are (two-sided) inverses for
one another. This leads us to a good behavioral characterization of what it
means for objects to be essentially the same in any category.
Definition 2.3.0.2 (isomorphism) An arrow 𝑓 ∶ A → B is an isomorphism if
there exists an anti-parallel arrow 𝑔 ∶ B → A, called an inverse of 𝑓 , such that:

𝑓 ⋅ 𝑔 = id(A) and 𝑔 ⋅ 𝑓 = id(B)

It follows from lemma 2.3.0.1 that an inverse of 𝑓 is unique, so we can write it un-
ambiguously as “𝑓−1”. To indicate the existence of an unspecified isomorphism
between objects A and B, we write “A ≅ B” and call the objects isomorphic.

Isomorphism is the right notion of “essentially the same” for objects of an arbi-
trary category because in categories we must characterize objects behaviorally,
and there is generally no way to distinguish objects that behave identically.
Exercise 2.3.0.3 Show that isomorphism of objects is an equivalence relation;
that is, for any objects A, B and C,

reflexivity: A ≅ A
symmetry: A ≅ B implies B ≅ A
transitivity: A ≅ B and B ≅ C implies A ≅ C
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Definition 2.3.0.4 (groupoid) A category in which every arrow is an isomor-
phism is called a groupoid. In particular, a single-object groupoid is a group.
Exercise 2.3.0.5 Check that this definition coincides with the usual definition
of a group.



30 CHAPTER 2. BEHAVIORAL REASONING



Chapter 3

Universal Constructions

A universal construction is a description of a construction within a category
that determines it uniquely up to a canonical isomorphism. This is the best
kind of description we can hope for in a behavioral setting, where we do not
have direct access to the internal structure of the objects we are working with.

Universal constructions are defined using universal properties, which assert
that the construction itself has some property, and that if any other construction
in the category has the same property then there is a canonical relationship
between the two.

In this chapter we introduce the universal constructions needed for the cate-
gorical interpretation of typing contexts and simple type formers. We do this
in a deliberately methodical way, in order to emphasize the similarities in the
constructions.

3.1 Terminal and Initial Objects

3.1.1 Terminal Objects

In the category Set, a singleton set S has the property that given any set X
there is a unique function from X to S, namely, the constant function on the
only element of S. This is a behavioral characterization that we may state in
an arbitrary category.
Definition 3.1.1.1 (terminal object) In any category, a terminal object is an
object T with the property that for any object X there is a unique morphism
𝑥 ∶ X → T.

We write “!(X)” for the unique map from an object X to a terminal object and
refer to it as a bang map.
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Whenever some construction has a certain relationship to all constructions of
the same kind within a category, it must, in particular, have this relationship
to itself. Socrates’ dictum to “know thyself” is as important in category theory
as it is in life. So whenever we encounter a universal construction we will see
what we can learn about it by “probing it with itself”. In the case of a terminal
object, this means choosing X ≔ T in the definition.
Lemma 3.1.1.2 (identity expansion for terminals) If T is a terminal object
then !(T) = id(T).

Proof. By assumption, !(T) is the unique map 𝑡 ∶ T → T, but id(T) is an arrow
in the same hom set.

Universal constructions are each unique up to a unique structure-preserving
isomorphism. In the case of a terminal object, the structure to be preserved is
trivial: it’s just a single object. Consequently, we obtain an especially strong
uniqueness property.
Lemma 3.1.1.3 (uniqueness of terminals) When they exist, terminal objects
are unique up to a unique isomorphism.

Proof. Suppose that T and R are two terminal objects in a category. By as-
sumption, there are unique arrows 𝑡 ∶ T → R and 𝑟 ∶ R → T and:

𝑡 ⋅ 𝑟 ∶ T → T
= [T is terminal]

!(T) ∶ T → T
= [identity expansion for terminals]

id(T) ∶ T → T

R

T T

𝑡 𝑟

!

id

Symmetrically, we have that 𝑟 ⋅ 𝑡 = id(R). So 𝑡 is an isomorphism. By the
universal property of R, the hom set T → R is a singleton, so it must be the
only one.

Because terminal objects are unique up to unique isomorphism, we write “1” to
refer to an arbitrary terminal object of a category.



3.1. TERMINAL AND INITIAL OBJECTS 33

Exercise 3.1.1.4 (pre-composing with a bang) Use the universal property of a
terminal object to prove the following:

For a terminal object 1 and arrow 𝑖 ∶ Y → X,

𝑖 ⋅ !(X) = !(Y) ∶ Y → 1

Y X

1
!!

𝑖

As mentioned, in SET, any singleton set is terminal. Likewise, in Cat, any
singleton category is. In Mon, the trivial monoid (having only the identity
element) is terminal.
Exercise 3.1.1.5 Work out what a terminal object is in the category PreOrd,
and determine when a preordered set, as a category, has a terminal object.

3.1.2 Unit Type

The terminal object universal construction provides a categorical interpretation
of the unit type, ⊤,

⟦⊤⟧ ≔ 1
The introduction rule for unit type,

Γ ⊢ ⋆ ∶ ⊤ ⊤+

is interpreted by the bang map:

⟦⋆⟧ ≔ !(⟦Γ⟧) ∶ ⟦Γ⟧ → 1

3.1.3 Global and Generalized Elements

In Set, there is a bijection between the elements of a set X and the functions
from a singleton set to X: to each 𝑥 ∈ X there corresponds the unique function
⌜𝑥⌝ ∶ 1 → X mapping ⋆ ⟼ 𝑥. We can use this behavioral characterization to
define an analogue for set membership.
Definition 3.1.3.1 (global element) In a category with a terminal object, a
global element (or “point”) of an object X is an element of the hom set 1 → X.
Definition 3.1.3.2 (generalized element) In contrast, a generalized element
of an object X is just a morphism with codomain X; in other words, an object
of the slice category over X.
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In Set, we can determine whether or not two functions are the same by probing
them with points because two parallel functions 𝑓 , 𝑔 ∶ Set (X → Y) are equal
just in case ∀𝑥 ∈ X . 𝑓(𝑥) = 𝑔(𝑥). This is known as the principle of function
extensionality. Here is a categorical analogue:
Definition 3.1.3.3 (well-pointed category) A category with a terminal object
is well-pointed if for every 𝑓 , 𝑔 ∶ A → B, and global element 𝑎 ∶ 1 → A ,

𝑎 ⋅ 𝑓 = 𝑎 ⋅ 𝑔 implies 𝑓 = 𝑔

Notice the similarity to the definition of an epimorphism. In fact, we say that
a category is well-pointed if its points are jointly epic, that is, if points are
collectively able to distinguish arrows.
Exercise 3.1.3.4 In contrast to the case with global elements, in any category
we can determine whether or not two parallel arrows are the same by probing
them with generalized elements. Prove this. (Hint: for any pair of arrows, a
single “probe” suffices.)

3.1.4 Initial Objects

The concept dual to that of a terminal object is of an initial object.
Definition 3.1.4.1 (initial object) In any category, an initial object is an
object S with the property that for any object X there is a unique morphism
𝑥 ∶ S → X
We write “¡(X)” for the unique map in S → X and refer to it as a cobang map.
By probing an initial object with itself we obtain a result dual to lemma 3.1.1.2:
Lemma 3.1.4.2 (identity expansion for initials) If S is an initial object then
¡(S) = id(S).
Exercise 3.1.4.3 (uniqueness of initials) Check that when they exist, initial
objects are unique up to a unique isomorphism.

We write “0” to refer to an arbitrary initial object of a category.
Lemma 3.1.4.4 (post-composing with a cobang) dual to exercise 3.1.1.4:

For an initial object 0 and arrow 𝑖 ∶ X → Y,

¡(X) ⋅ 𝑖 = ¡(Y) ∶ 0 → Y

0

X Y

¡ ¡

𝑖
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In Set, the empty set is initial. Likewise, in Cat, the empty category is. In
Mon, the trivial monoid is initial as well as terminal. (An object which is both
terminal and initial is known as a null object.)
Exercise 3.1.4.5 Dualize exercise 3.1.1.5 by working out what an initial object
is in the category PreOrd, and determine when a preordered set, as a category,
has an initial object.

3.1.5 Void Type

The initial object universal construction provides a possible categorical inter-
pretation of the void type, ⊥,

⟦⊥⟧ ≔ 0

In the restricted setting where contexts are singletons, the elimination rule for
void type,

𝑧 ∶ ⊥ ⊢ abort† ∶ A
⊥−†

is then interpreted by the cobang map:

⟦abort†⟧ ≔ ¡(⟦A⟧) ∶ 0 → ⟦A⟧

Note that in this case, the interpretations of all terms of a given type in an
inconsistent context coincide:

∀(𝑧 ∶ ⊥ ⊢ M , N ∶ A) . ⟦M⟧ ≅ ⟦N⟧

Depending on how the type theory is set up, this equation may or may not be
reflected there.

3.2 Products

3.2.1 Products of Objects

The set of ordered pairs:

A × B ≔ {(𝑎 , 𝑏) | 𝑎 ∈ A and 𝑏 ∈ B}

comes equipped with two projection functions,

π0
A × B ⟶ A
(𝑎 , 𝑏) ⟼ 𝑎 and

π1
A × B ⟶ B
(𝑎 , 𝑏) ⟼ 𝑏
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such that for ordered pair 𝑐 ∈ A × B,

𝑐 = (π0 𝑐 , π1 𝑐)

So having a pair of elements, one from the set A and one from the set B, is the
same thing as having a single element of the set A × B: given an 𝑎 ∈ A and
𝑏 ∈ B we make an element of A × B by forming the tuple (𝑎 , 𝑏), and given an
element 𝑐 ∈ A × B we recover elements of A and B by taking the projections.

Not every category is well-pointed like Set is, or for that matter, even has a ter-
minal object. So to describe this situation behaviorally we must use generalized
elements. This motivates the definition of products in an arbitrary category.
Definition 3.2.1.1 (product of objects) In any category, a cartesian1 product
of objects A and B is a span on A and B,

A
𝑝0⟵ P

𝑝1⟶ B

with the property that for any span on A and B,

A
𝑥0⟵ X

𝑥1⟶ B

there is a unique map 𝑡 ∶ X → P such that 𝑡 ⋅ 𝑝0 = 𝑥0 and 𝑡 ⋅ 𝑝1 = 𝑥1:

X

A P B𝑝0 𝑝1

𝑥0 𝑥1𝑡

This says that there is a bijection between ordered pairs of maps (𝑥0 , 𝑥1) and
single maps 𝑡 such that the diagram commutes. We call A and B the factors of
the product, 𝑝0 and 𝑝1 its (coordinate) projections and 𝑡 the tuple of 𝑥0 and
𝑥1 and write it as “⟨𝑥0 , 𝑥1⟩”.
Let’s see what we can learn from probing a product with itself by choosing
X ≔ P and (𝑥0 , 𝑥1) ≔ (𝑝0 , 𝑝1).
Lemma 3.2.1.2 (identity expansion for products) If P is a product of A and B
with projections 𝑝0 and 𝑝1, then ⟨𝑝0 , 𝑝1⟩ = id(P).

Proof. By assumption, ⟨𝑝0 , 𝑝1⟩ is the unique map 𝑡 ∶ P → P with the property
1 The word “cartesian” is sometimes used for emphasis to distinguish this construction from

various other categorical constructions also known as “products” (e.g. the monoidal product,
– ⊗ –). But this is the only “product” that we will consider in this course.
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that, 𝑡 ⋅ 𝑝0 = 𝑝0 and 𝑡 ⋅ 𝑝1 = 𝑝1:

P

A P B𝑝0 𝑝1

𝑝0 𝑝1⟨𝑝0 , 𝑝1⟩

but by the left unit law of composition, id(P) has this property.

Because products are structures characterized by a universal property, we ex-
pect them to be uniquely determined up to a unique structure-preserving iso-
morphism. This is indeed the case:
Lemma 3.2.1.3 (uniqueness of products) When they exist, products of objects
are unique up to a unique projection-preserving isomorphism.

Proof. Suppose that the spans:

A
𝑝0⟵ P

𝑝1⟶ B and A
𝑞0⟵ Q

𝑞1⟶ B

are both products of A and B. Because Q is a product there is a unique 𝑠 ∶ P →
Q such that 𝑠 ⋅ 𝑞0 = 𝑝0 and 𝑠 ⋅ 𝑞1 = 𝑝1. Likewise, because P is a product there
is a unique 𝑡 ∶ Q → P such that 𝑡 ⋅ 𝑝0 = 𝑞0 and 𝑡 ⋅ 𝑝1 = 𝑞1:

P

A Q B

P

𝑝0 𝑝1

𝑞0 𝑞1

𝑝0 𝑝1

𝑠

𝑡

Then for 𝑖 ∈ {0 , 1}:
𝑠 ⋅ 𝑡 ⋅ 𝑝𝑖

= [P is a product]
𝑠 ⋅ 𝑞𝑖

= [Q is a product]
𝑝𝑖
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Thus 𝑠 ⋅ 𝑡 = ⟨𝑝0 , 𝑝1⟩ ∶ P → P. By identity expansion for products, 𝑠 ⋅ 𝑡 = id(P).
Reversing the roles of P and Q, we get that 𝑡 ⋅ 𝑠 = id(Q) as well. So 𝑠 is an
isomorphism. By the universal property of Q, it is the only one that respects
the coordinate projections.

Because products are determined as uniquely as is possible by a behavioral
characterization, we write “A × B” to refer to an arbitrary product of A and
B. When the product in question is clear from context, we refer to the two
coordinate projections generically as “π0” and “π1”.

In the category Set, the set of ordered pairs is a cartesian product. Likewise, in
Cat, the ordered pair category is. This justifies the notation – × – that we used
in both cases.

Note that unlike the case with terminal objects, there is not necessarily a unique
isomorphism between two products of the same factors. For example, in Set the
identity function, (𝑥 , 𝑦) ⟼ (𝑥 , 𝑦), and swap map, (𝑥 , 𝑦) ⟼ (𝑦 , 𝑥), are both
isomorphisms A × A → A × A. But only the former respects the coordinate
projections.
Definition 3.2.1.4 (diagonal map) For every object A, the universal property
of the product gives a canonical diagonal map, which duplicates its argument:

∆(A) ≔ ⟨id(A) , id(A)⟩ ∶ A → A × A

A

A A × A Aπ0 π1

id id
∆

Exercise 3.2.1.5 (pre-composing with a tuple) Use the diagram below and the
universal property of a product of objects to prove the following:

For a product A × B, a tuple ⟨𝑓 , 𝑔⟩ ∶ X → A × B and an arrow 𝑖 ∶ Y → X,

𝑖 ⋅ ⟨𝑓 , 𝑔⟩ = ⟨𝑖 ⋅ 𝑓 , 𝑖 ⋅ 𝑔⟩ ∶ Y → A × B

Y

X

A A × B Bπ0 π1

𝑓 𝑔
⟨𝑓 , 𝑔⟩

𝑖𝑖 ⋅ 𝑓 𝑖 ⋅ 𝑔
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3.2.2 Product Functors

We can use the universal property of a product of objects to define a product
of arrows as well:
Definition 3.2.2.1 (product of arrows) Given a pair of arrows 𝑓 ∶ X → A and
𝑔 ∶ Y → B, and products X × Y and A × B, we define the product of arrows
by:

𝑓 × 𝑔 ∶ X × Y → A × B
𝑓 × 𝑔 ≔ ⟨π0 ⋅ 𝑓 , π1 ⋅ 𝑔⟩

By the universal property of the product A × B, the arrow 𝑓 × 𝑔 is the unique
morphism making the two squares commute:

X X × Y Y

A A × B B

π0 π1

π0 π1

𝑓 𝑔𝑓 × 𝑔

This allows us to characterize the product as a functor – indeed, a bifunctor:
Lemma 3.2.2.2 (functoriality of products) If a category ℂ has products for
each pair of objects, then the given definition of products for arrows yields a
functor,

– × – ∶ ℂ × ℂ → ℂ

called the product functor.

Before giving the proof, we pause to explain this statement, as it is easy to be
confused about what is being asserted. In the theorem, “ℂ × ℂ” is the ordered
pair category (definition 1.7.1.1); i.e. the product of ℂ with itself in Cat. In
contrast, “–×–” is the name of an alleged functor having as domain the category
ℂ × ℂ and as codomain the category ℂ.

Proof. In order to prove that – × – is a functor, we must show that it preserves
the composition structure.

nullary composition: We must show that

id(A0) × id(A1) = id(A0 × A1)
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In the diagram,

A0 A0 × A1 A1

A0 A0 × A1 A1

π0 π1

π0 π1

id idid

the arrow id(A0 × A1) makes both squares commute, so the result follows
by the definition of product of arrows.

binary composition: We must show that

(𝑓0 ⋅ 𝑔0) × (𝑓1 ⋅ 𝑔1) = (𝑓0 × 𝑓1) ⋅ (𝑔0 × 𝑔1)

In the diagram,

A0 A0 × A1 A1

B0 B0 × B1 B1

C0 C0 × C1 C1

π0 π1

π0 π1

π0 π1

𝑓0 𝑓1

𝑔0 𝑔1

𝑓0 × 𝑓1

𝑔0 × 𝑔1

the top two squares commute by the definition of 𝑓0 × 𝑓1 and the bottom
two squares commute by the definition of 𝑔0 × 𝑔1. By pasting, the rectan-
gle comprising the two left squares commutes, and likewise the rectangle
comprising the two right squares. By definition, (𝑓0 ⋅ 𝑔0) × (𝑓1 ⋅ 𝑔1) is the
unique arrow from A0 ×A1 to C0 ×C1 making the outer square commute.

Exercise 3.2.2.3 (post-composing a product of arrows) Use the universal prop-
erty of a product of objects to prove the following:

For arrows ⟨𝑓0 , 𝑓1⟩ ∶ X → A0 × A1 and 𝑔0 × 𝑔1 ∶ A0 × A1 → B0 × B1,

⟨𝑓0 , 𝑓1⟩ ⋅ (𝑔0 × 𝑔1) = ⟨𝑓0 ⋅ 𝑔0 , 𝑓1 ⋅ 𝑔1⟩
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X

A0 A0 × A1 A1

B0 B0 × B1 B1

π0 π1

π0 π1

𝑓0 𝑓1⟨𝑓0 , 𝑓1⟩

𝑔0 𝑔1𝑔0 × 𝑔1

Corollary 3.2.2.4 (tuple factorization) A tuple ⟨𝑓 , 𝑔⟩ ∶ X → A × B factors
through the diagonal as,

⟨𝑓 , 𝑔⟩ = ∆(X) ⋅ (𝑓 × 𝑔)

X

X X × X X

A A × B B

π0 π1

π0 π1

id id
∆

𝑓 𝑔𝑓 × 𝑔

3.2.3 Product Types

The product universal construction provides a categorical interpretation of prod-
uct types,

⟦A × B⟧ ≔ ⟦A⟧ × ⟦B⟧
The introduction rule for products,

Γ ⊢ M ∶ A Γ ⊢ N ∶ B
Γ ⊢ ⟨M , N⟩ ∶ A × B ×+

is interpreted by the tuple construction:

⟦⟨M , N⟩⟧ ≔ ⟨⟦M⟧ , ⟦N⟧⟩

and the (negative) elimination rules for products,

Γ ⊢ P ∶ A × B
Γ ⊢ fst(P) ∶ A

×−0
Γ ⊢ P ∶ A × B
Γ ⊢ snd(P) ∶ B

×−1

are interpreted by the coordinate projections:

⟦fst(P)⟧ ≔ ⟦P⟧ ⋅ π0 and ⟦snd(P)⟧ ≔ ⟦P⟧ ⋅ π1
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3.2.4 Finite Products

Returning to the theme of unbiased presentations, we would like to define an
𝑛-ary product for each 𝑛 ∈ ℕ. Let’s think about what the universal property of
such a construction would be. A product of 𝑛 factors would consist of an object
P, together with a coordinate projection, π𝑖 ∶ P → A𝑖 for each factor such that
for any 𝑛-ary span 𝑥𝑖 ∶ X → A𝑖 over the same factors there is a unique 𝑛-tuple
map 𝑡 ∶ X → P with 𝑡 ⋅ π𝑖 = 𝑥𝑖.

X

P

A0 A𝑛−1

π0 π𝑛−1

𝑥0 𝑥1

𝑡

⋯

⋯

For 𝑛 ≔ 0, a nullary product is an object P (requiring no coordinate projec-
tions) such that for any object X (requiring no maps to the zero factors) there
is a unique null-tuple ⟨ ⟩ ∶ X → P (satisfying no conditions):

X

P

⟨ ⟩

But this is just a terminal object!

For 𝑛 ≔ 1, a unary product of an object A is an object P with a single
coordinate projection, π ∶ P → A such that for any arrow 𝑥 ∶ X → A there is a
unique one-tuple ⟨𝑥⟩ ∶ X → P with ⟨𝑥⟩ ⋅ π = 𝑥:

X

A Pπ

𝑥
⟨𝑥⟩

A moment’s thought confirms that the choice of P ≔ A and π ≔ id(A) (and
thus ⟨𝑥⟩ ≔ 𝑥) satisfies this property. So any object is a unary product of itself.
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Binary products have already been defined, so we have left to consider products
of three or more factors. A ternary product is an object A × B × C, equipped
with three coordinate projection maps such that for any 3-legged span over its
factors there is a unique map from the vertex to A × B × C commuting with
the coordinate projections. But this is the same universal property enjoyed by
(A × B) × C, which has projections π0 ⋅ π0 to A, π0 ⋅ π1 to B and π1 to C. Any
span over A, B and C contains a subspan over A and B, so by the universal
property of A × B, has a unique map from the vertex to this product, which
together with the C leg of the span gives us a unique map from the vertex to
(A × B) × C. The product of four or more factors is analogous.

Of course, there is nothing special about the choice of bracketing:
Lemma 3.2.4.1 (product associator) Products are associative, up to isomor-
phism:

A × (B × C) ≅ (A × B) × C

Proof. The maps back and forth,

𝑠 ∶ A × (B × C) → (A × B) × C and 𝑡 ∶ (A × B) × C → A × (B × C)

become clear when we draw the diagram showing how each compound product
projects to the three factors, A, B and C:

(A × B) × C

A × B

A B C

B × C

A × (B × C)

π0

π1

π0 π1

π0

π1

π0 π1

From this we can simply read off:

𝑠 ≔ ⟨⟨π0 , π1 ⋅ π0⟩ , π1 ⋅ π1⟩ ∶ A × (B × C) → (A × B) × C

𝑡 ≔ ⟨π0 ⋅ π0 , ⟨π0 ⋅ π1 , π1⟩⟩ ∶ (A × B) × C → A × (B × C)
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And then we check:

𝑠 ⋅ 𝑡
= [definition 𝑡]

𝑠 ⋅ ⟨π0 ⋅ π0 , ⟨π0 ⋅ π1 , π1⟩⟩
= [precomposing with a tuple]

⟨𝑠 ⋅ π0 ⋅ π0 , ⟨𝑠 ⋅ π0 ⋅ π1 , 𝑠 ⋅ π1⟩⟩
= [definition 𝑠]

⟨π0 , ⟨π1 ⋅ π0 , π1 ⋅ π1⟩⟩
= [precomposing with a tuple]

⟨π0 , π1 ⋅ ⟨π0 , π1⟩⟩
= [identity expansion for products]

⟨π0 , π1 ⋅ id⟩
= [composition unit law]

⟨π0 , π1⟩
= [identity expansion for products]

id

Similarly, 𝑡 ⋅ 𝑠 = id.

Up to isomorphism, the cartesian product has the structure of a monoid:
Lemma 3.2.4.2 (product unitor) A terminal object is a unit for products, up
to isomorphism:

A × 1 ≅ A ≅ 1 × A

Proof. The projection π0 ∶ A × 1 → A is an isomorphism, with inverse ⟨id(A) ,
!(A)⟩ ∶ A → A × 1.

• By the universal property of the product,

⟨id(A) , !(A)⟩ ⋅ π0 = id(A) ∶ A → A

• Going the other way,

π0 ⋅ ⟨id(A) , !(A)⟩ ∶ A × 1 → A × 1
= [pre-composing with a tuple]

⟨π0 ⋅ id(A) , π0 ⋅ !(A)⟩
= [composition unit law and pre-composing with a bang]

⟨π0 , !(A × 1)⟩
= [universal property of a terminal object]

⟨π0 , π1⟩
= [identity expansion for products]

id(A × 1)
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And furthermore, this monoid is commutative:
Lemma 3.2.4.3 (product symmetry) Products are symmetric, up to isomor-
phism:

A × B ≅ B × A

Proof. The swap map, σA,B ≔ ⟨π1 , π0⟩ ∶ A × B → B × A is an isomorphism,
with inverse the swap map, σB,A ≔ ⟨π1 , π0⟩ ∶ B × A → A × B:

σA,B ⋅ σB,A
= [definition]

⟨π1 , π0⟩ ⋅ ⟨π1 , π0⟩
= [pre-composing with a tuple]

⟨⟨π1 , π0⟩ ⋅ π1 , ⟨π1 , π0⟩ ⋅ π0⟩
= [universal property of a product]

⟨π0 , π1⟩
= [identity expansion for products]

id(A × B)

and symmetrically σB,A ⋅ σA,B = id(B × A)

To have finite products – that is, 𝑛-ary products for all 𝑛 ∈ ℕ, it suffices to
have binary products and a terminal object. A category with all finite products
is called a cartesian category.

3.2.5 Typing Contexts

Finite products provide the categorical structure needed to interpret (non-
dependent, structural) typing contexts. We interpret the empty context with a
terminal object:

⟦∅⟧ ≔ 1
And we interpret context extension with a cartesian product:

⟦Γ , 𝑥 ∶ A⟧ ≔ ⟦Γ⟧ × ⟦A⟧

Or, from the unbiased perspective, for Γ ≔ −−−→𝑥𝑖 ∶ A𝑖,

⟦Γ⟧ ≔ ⟦A0⟧ × ⋯ × ⟦A𝑛⟧

Finite products give us just the right structure needed to implement what are
commonly called “structural rules”, which are rules that we expect to be ad-
missible in type theories of a certain class, i.e. “structural type theories”. The
structural rules of weakening, contraction and exchange specify properties of
contexts. Because contexts are interpreted as the domains of arrows, we expect
their interpretations to behave contravariantly.
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The principle of context weakening says that a well-typed term remains so in
the presence of additional, unused assumptions:

Γ ⊢ M ∶ B
Γ , 𝑥 ∶ A ⊢ M ∶ B 𝑐𝑤

Its categorical interpretation must be some means of constructing a member
of ⟦Γ⟧ × ⟦A⟧ → ⟦B⟧ from a member of ⟦Γ⟧ → ⟦B⟧. We can do this by simply
pre-composing a projection, or equivalently, up to the unit isomorphism for
products, the product of an identity arrow and a bang map:

⟦Γ⟧ × ⟦A⟧ ⟦Γ⟧ × 1 ⟦Γ⟧ ⟦B⟧
id × ! ≅ ⟦M⟧

The principle of context contraction says that a well-typed term depending on
two variables of the same type remains so when a single variable is substituted
for both:

Γ , 𝑥 ∶ A , 𝑦 ∶ A ⊢ M ∶ B
Γ , 𝑧 ∶ A ⊢ M[(𝑥 , 𝑦)↦(𝑧 , 𝑧)] ∶ B

𝑐𝑐

Its categorical interpretation must be some means of constructing a member of
⟦Γ⟧ × ⟦A⟧ → ⟦B⟧ from a member of ⟦Γ⟧ × ⟦A⟧ × ⟦A⟧ → ⟦B⟧. We can do this by
simply pre-composing the product of an identity arrow and a diagonal map:

⟦Γ⟧ × ⟦A⟧ ⟦Γ⟧ × ⟦A⟧ × ⟦A⟧ ⟦B⟧
id × ∆ ⟦M⟧

The principle of context exchange says that a well-typed term remains so
under a permution of its context:

Γ , 𝑦 ∶ B , 𝑥 ∶ A , Γ′ ⊢ M ∶ C
Γ , 𝑥 ∶ A , 𝑦 ∶ B , Γ′ ⊢ M ∶ C

𝑐𝑥

Its categorical interpretation must be some means of constructing a member of
⟦Γ⟧ × ⟦A⟧ × ⟦B⟧ × ⟦Γ′⟧ → ⟦C⟧ from a member of ⟦Γ⟧ × ⟦B⟧ × ⟦A⟧ × ⟦Γ′⟧ → ⟦C⟧.
We can do this by simply pre-composing the product of identity arrows and a
swap map:

⟦Γ⟧ × ⟦A⟧ × ⟦B⟧ × ⟦Γ′⟧ ⟦Γ⟧ × ⟦B⟧ × ⟦A⟧ × ⟦Γ′⟧ ⟦C⟧
id × σ × id ⟦M⟧

So a system that a type theorist might call “structural”, a category theorist
would call “cartesian”: it is one in which we may duplicate and discard (as well
as reorder) elements of the context. Note that by convention, in type theory
weakening and exchange are “silent”, in the sense that we don’t record them in
the term itself.
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Exercise 3.2.5.1 In structural type theories, the variable rule and substitution
rule of baby type theory have the following genrealizations:

Γ , 𝑥 ∶ A ⊢ 𝑥 ∶ A 𝑣𝑎𝑟
and

Γ ⊢ M ∶ B Γ , 𝑦 ∶ B ⊢ N ∶ C
Γ ⊢ N[𝑦↦M] ∶ C 𝑠𝑢𝑏

Why are these generalizations sound in a setting where contexts are interpreted
as finite products?

3.3 Coproducts

A coproduct is the dual construction to a product. Categorically, that is all
there is to say about the matter. But because of the asymmetry inherent in
type theory – where inferences have a collection of assumptions, yet a single
conclusion – we will have to say a bit more when it comes to our categorical
semantics for type theory.

First, we record for convenience, but without further comment, the duals of our
main results about products. If you’re new to this, it would be an excellent
exercise first to go back and see why these are the respective dual theorems,
and then to prove each one explicitly – that is, by actually going through the
argument, rather than by just saying, “by duality, Qed”.

3.3.1 Coproducts of Objects

Definition 3.3.1.1 (coproduct of objects) In any category, a coproduct of
objects A and B is a cospan on A and B,

A
𝑞0⟶ Q

𝑞1⟵ B

with the property that for any cospan on A and B,

A
𝑥0⟶ X

𝑥1⟵ B

there is a unique map 𝑠 ∶ Q → X such that 𝑞0 ⋅ 𝑠 = 𝑥0 and 𝑞1 ⋅ 𝑠 = 𝑥1:

A Q B

X

𝑞0 𝑞1

𝑥0 𝑥1
𝑠
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We call A and B the cases of the coproduct, 𝑞0 and 𝑞1 its insertions and 𝑠 the
cotuple of 𝑥0 and 𝑥1, and write it as “[𝑥0 , 𝑥1]”.
Probing a coproduct with itself by choosing X ≔ Q and (𝑥0 , 𝑥1) ≔ (𝑞0 , 𝑞1), we
learn:
Lemma 3.3.1.2 (identity expansion for coproducts) If Q is a coproduct of A
and B with insertions 𝑞0 and 𝑞1, then [𝑞0 , 𝑞1] = id(Q).
And being characterized by a universal property, we expect:
Lemma 3.3.1.3 (uniqueness of coproducts) When they exist, coproducts of
objects are unique up to a unique insertion-preserving isomorphism.

We write “A + B” to refer to an arbitrary coproduct of A and B, When the
coproduct in question is clear from context, we refer to the two case insertions
generically as “ι0” and “ι1”.

In the category Set, the disjoint union of two sets is their coproduct. In Cat,
there is something similar: ℂ + 𝔻 is the category whose collection of objects
is the disjoint union of those of ℂ and 𝔻 and whose homs between pairs of ℂ-
objects is the same as in ℂ, and likewise for 𝔻, but where the “mixed” homs are
empty.
Definition 3.3.1.4 (codiagonal map) For every object A, the universal property
of the coproduct gives a canonical codiagonal map, which forgets about case
distinction:

∇(A) ≔ [id(A) , id(A)] ∶ A + A → A

A A + A A

A

ι0 ι1

id id
∇

Lemma 3.3.1.5 (post-composing with a cotuple) For a coproduct A + B, a
cotuple [𝑓 , 𝑔] ∶ A + B → X and an arrow 𝑗 ∶ X → Y,

[𝑓 , 𝑔] ⋅ 𝑗 = [𝑓 ⋅ 𝑗 , 𝑔 ⋅ 𝑗] ∶ A + B → Y

A A + B B

X

Y

ι0 ι1

𝑓 𝑔[𝑓 , 𝑔]

𝑗𝑓 ⋅ 𝑗 𝑔 ⋅ 𝑗
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3.3.2 Coproduct Functors

Definition 3.3.2.1 (coproduct of arrows) Given a pair of arrows 𝑓 ∶ A → X
and 𝑔 ∶ B → Y, and coproducts A + B and X + Y, we define the coproduct of
arrows 𝑓 + 𝑔 ∶ A + B → X + Y by:

𝑓 + 𝑔 ∶ A + B → X + Y
𝑓 + 𝑔 ≔ [𝑓 ⋅ ι0 , 𝑔 ⋅ ι1]

By the universal property of the coproduct A + B, the arrow 𝑓 + 𝑔 is the unique
morphism making the two squares commute:

A A + B B

X X + Y Yι0 ι1

ι0 ι1

𝑓 𝑔𝑓 + 𝑔

This allows us to characterize the coproduct as a bifunctor:
Lemma 3.3.2.2 (functoriality of coproducts) If a category ℂ has coproducts
for each pair of objects, then the given definition of coproducts for arrows yields
a functor,

– + – ∶ ℂ × ℂ → ℂ
called the coproduct functor.
Lemma 3.3.2.3 (pre-composing a coproduct of arrows) For arrows 𝑓0 + 𝑓1 ∶
A0 + A1 → B0 + B1 and [𝑔0 , 𝑔1] ∶ B0 + B1 → X,

(𝑓0 + 𝑓1) ⋅ [𝑔0 , 𝑔1] = [𝑓0 ⋅ 𝑔0 , 𝑓1 ⋅ 𝑔1]

A0 A0 + A1 A1

B0 B0 + B1 B1

X

ι0 ι1

ι0 ι1

𝑓0 𝑓1𝑓0 + 𝑓1

𝑔0 𝑔1
[𝑔0 , 𝑔1]

Corollary 3.3.2.4 (cotuple factorization) A cotuple [𝑓 , 𝑔] ∶ A + B → X factors
through the codiagonal as,

[𝑓 , 𝑔] = (𝑓 + 𝑔) ⋅ ∇(X)
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A A + B B

X X + X X

X

ι0 ι1

ι0 ι1

𝑓 𝑔𝑓 + 𝑔

id id
∇

3.3.3 Sum Types

The coproduct universal construction provides a possible categorical interpre-
tation of sum types,

⟦A + B⟧ ≔ ⟦A⟧ + ⟦B⟧
The introduction rules for sums,

Γ ⊢ M ∶ A
Γ ⊢ inl(M) ∶ A + B

++0
Γ ⊢ N ∶ B

Γ ⊢ inr(N) ∶ A + B
++1

are then interpreted by the case insertions:

⟦inl(M)⟧ ≔ ⟦M⟧ ⋅ ι0 and ⟦inr(N)⟧ ≔ ⟦N⟧ ⋅ ι1
In the restricted setting where contexts are singletons, the elimination rule for
sums,

𝑥 ∶ A ⊢ P ∶ C 𝑦 ∶ B ⊢ Q ∶ C
𝑧 ∶ A + B ⊢ case†(𝑥 . P ; 𝑦 . Q) ∶ C +−†

is then interpreted by the cotuple:

⟦case†(𝑥 . P ; 𝑦 . Q)⟧ ≔ [⟦P⟧ , ⟦Q⟧]

3.3.4 Distributive Categories

In order to interpret the full rule for sum elimination, which allows for an arbi-
trary ambient context:

Γ , 𝑥 ∶ A ⊢ P ∶ C Γ , 𝑦 ∶ B ⊢ Q ∶ C
Γ , 𝑧 ∶ A + B ⊢ case(𝑥 . P ; 𝑦 . Q)(𝑧) ∶ C +−

we need a categorical setting in which the distributive law holds:

𝑑𝑖𝑠𝑡 ∶ X × (A + B) ≅ (X × A) + (X × B)
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since, in this setting we could define

⟦case⟧ ≔ 𝑑𝑖𝑠𝑡 ⋅ [– , –]

or
X × (A + B)

X × A (X × A) + (X × B) X × B

C

𝑑𝑖𝑠𝑡 ≅
𝑞0 𝑞1

𝑓 𝑔
[𝑓 , 𝑔]

Likewise, in order to interpret the full rule for void elimination, which also allows
for an arbitrary ambient context:

Γ , 𝑧 ∶ ⊥ ⊢ abort(𝑧) ∶ A ⊥−

we need a categorical setting in which the absorption law holds:

𝑎𝑏𝑠 ∶ X × 0 ≅ 0

since, in this setting we could define

⟦abort⟧ ≔ 𝑎𝑏𝑠 ⋅ ¡

or
X × 0

0

C

𝑎𝑏𝑠 ≅

¡

By duality with finite products, an initial object represents a nullary coprod-
uct. So we can think of the absorption law as a nullary version on the distribu-
tive law in the sense that in the latter the product distributes over the two cases
of the coproduct, while in the former it distributes over the zero cases of the
initial object.

For the distributive law to hold we merely require the existence of some natural2
isomorphism X × (A + B) → (X × A) + (X × B). It is a non-trivial theorem3

2We haven’t met naturality yet, but we soon will. It requires that the isomorphism we seek
should be “generic” in X, A and B.

3http://arxiv.org/abs/0912.2126

http://arxiv.org/abs/0912.2126
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that the existence of any such natural isomorphism implies the existence of a
certain canonical one. First, observe that whatever X, A and B are, there is
always a canonical morphism (X × A) + (X × B) → X × (A + B):

X × A (X × A) + (X × B) X × B

X × (A + B)

ι0 ι1

X × ι0 X × ι1

[X × ι0 , X × ι1]

Call this map 𝑢𝑛𝑑𝑖𝑠𝑡. If the distributive law holds then by the cited theorem
𝑢𝑛𝑑𝑖𝑠𝑡 is an isomorphism, and its inverse, 𝑑𝑖𝑠𝑡, is the canonical distributor.

There is always a canonical – indeed unique – arrow ¡ ∶ 0 → X × 0. So if the
absorption law is to hold, the absorber, 𝑎𝑏𝑠, must be the inverse of the cobang
arrow. Remarkably, the distributive law implies the absorption law:
Lemma 3.3.4.1 In a category, if products distribute over binary coproducts
then they distribute over nullary coproducts.

Proof. We prove that X × 0 ≅ 0 by showing that the former has the universal
property of an intitial object.

First, for any Y, the hom X × 0 → Y is inhabited by π1 ⋅ ¡. So it remains to
show uniqueness.

By the universal property of 0, the two insertions, ι0 , ι1 ∶ 0 → 0 + 0 are equal.
Arrow equality is a congruence under products, so in the coproduct diagram:

X × 0 (X × 0) + (X × 0) X × 0

X × (0 + 0)

ι0 ι1

X × ι0 X × ι1
𝑢𝑛𝑑𝑖𝑠𝑡

we have, ι0 ⋅ 𝑢𝑛𝑑𝑖𝑠𝑡 = X × ι0 = X × ι1 = ι1 ⋅ 𝑢𝑛𝑑𝑖𝑠𝑡. Post-composing 𝑑𝑖𝑠𝑡 shows
that the two insertions, ι0 , ι1 ∶ X × 0 → (X × 0) + (X × 0) coincide as well.

Thus, for any 𝑓 , 𝑔 ∶ X × 0 → Y we have 𝑓 = ι0 ⋅ [𝑓 , 𝑔] = ι1 ⋅ [𝑓 , 𝑔] = 𝑔 in:

X × 0 (X × 0) + (X × 0) X × 0

Y

ι0 ι1

𝑓 𝑔[𝑓 , 𝑔]
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A category with finite products and coproducts in which the distributive law
holds is called a distributive category. Furthermore, the presence of the
next universal construction we meet is sufficient to ensure that a category is
distributive.

3.4 Exponentials

As functional programmers, we are familiar with the idea of function currying,
that is, of viewing a function of two arguments as a higher-order function that
takes the first argument and returns a new function, which, when provided the
second argument, computes the same result as the original function when given
both arguments at once. Once we get used to working with high-order functions,
we wonder how we ever managed to program any other way.

3.4.1 Exponentials of Objects

Exponential objects are the categorical analogue of set-theoretic function space,
allowing us to characterize function currying and λ-abstraction.
Definition 3.4.1.1 (exponential object) In a category with binary products,
an exponential of objects A and B is an object E together with an arrow
ε ∶ E × A → B with the property that for any object X and arrow 𝑓 ∶ X × A → B
there is a unique arrow λ(𝑓) ∶ X → E such that λ(𝑓) × A ⋅ ε = 𝑓 :

X E

X × A B

E × A

ε

𝑓

λ(𝑓)

λ(𝑓) × A

We call ε the evaluation map of the exponential, and λ(𝑓) the exponential
transpose or “curry” of 𝑓 .

Notice that the “such that” clause of the definition lets us recover 𝑓 from λ(𝑓):
just take the product with id(A) and compose with ε. This is just “uncurrying”
to functional programmers. If this isn’t clear to you, go back to the definitions
of product and coproduct and see how the same principle allows us to recover 𝑓
and 𝑔 from ⟨𝑓 , 𝑔⟩ and from [𝑓 , 𝑔], respectively.

Let’s see what we learn from probing an exponential with itself by choosing
X ≔ E and 𝑓 ≔ ε.
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Lemma 3.4.1.2 (identity expansion for exponentials) If E is an exponential of
A and B then λ(ε) = id(E).

Proof. By assumption, λ(ε) is the unique map in the hom set E → E with the
property that λ(ε) × A ⋅ ε = ε:

E E

E × A B

E × A

ε

ε

λ(ε)

λ(ε) × A

By the left unit law of composition, id(E × A) ⋅ ε = ε, and by the definition of
a product of arrows, id(E × A) = id(E) × id(A). Since id(E) has the desired
property, the result follows from uniqueness.

To summarize:

• currying the evaluation map yields the identity on the exponential, and

• uncurrying the identity on the exponential yields the evaluation map.

Because exponentials are structures characterized by a universal property, we
expect them to be unique up to a unique structure-preserving isomorphism.
This should be familiar by now.
Lemma 3.4.1.3 (uniqueness of expoentials) When they exist, exponentials are
unique up to a unique evaluation-preserving isomorphism.

Proof. Suppose that (E , ε , λ) and (E′ , ε′ , λ′) are both exponentials of A and
B. By setting X ≔ E′ and 𝑓 ≔ ε′ in the universal property of E, we have:

E′ E

E′ × A B

E × A

ε

ε′

λ(ε′)

λ(ε′) × A

That is, λ(ε′) × A ⋅ ε = ε′. Symmetrically, by the universal property of E′, we
have λ′(ε) × A ⋅ ε′ = ε.
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We want to show that λ′(ε) ⋅ λ(ε′) ∶ E → E is the identity map. We do so by
uncurrying it:

(λ′(𝑒) ⋅ λ(ε′)) × id(A) ⋅ ε
= [product functor]

λ′(𝑒) × id(A) ⋅ λ(ε′) × id(A) ⋅ ε
= [universal property of E]

λ′(𝑒) × id(A) ⋅ ε′

= [universal property of E′]
ε

So by identity expansion for exponentials, λ′(ε) ⋅ λ(ε′) = id(E).

E E′ E

E × A E′ × A B

E × A

ε

ε′

λ(ε′)

λ(ε′) × A

λ′(ε)

λ′(ε) × A

(λ′(ε) ⋅ λ(ε′)) × A

ε

id

Similarly, we have λ(ε′) ⋅ λ′(ε) = id(E′).
So λ′(ε) ∶ E → E′ is an isomorphism. By the universal property of E′, it is the
only one that respects the evaluation ε′.

Because exponentials are determined as uniquely as is possible by a behavioral
characterization, we write “A⊃B” to refer to an arbitrary exponential of A and
B. The notation “BA” is also common.
Definition 3.4.1.4 (pairing map) For every object A, the universal property of
the exponential gives a canonical pairing map, which is a higher-order function
that pairs an argument with a given parameter:

η(X) ≔ λ(id(X × A)) ∶ X → A ⊃ (X × A)

X A ⊃ (X × A)

X × A X × A

(A ⊃ (X × A)) × A

ε

id

η

η × A
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Exercise 3.4.1.5 (pre-composing with a curry) Use the diagram and the uni-
versal property of an exponential object to prove the following:

For an exponential A ⊃ B, an arrow 𝑓 ∶ X × A → B and an arrow 𝑖 ∶ Y → X,

𝑖 ⋅ λ𝑓 = λ(𝑖 × A ⋅ 𝑓) ∶ Y → A ⊃ B

Y X A ⊃ B

Y × A X × A B

(A ⊃ B) × A

ε

𝑓

λ(𝑓)

λ(𝑓) × A

𝑖

𝑖 × A

(𝑖 ⋅ λ(𝑓)) × A

Having products and exponents lets a category talk about its own hom collec-
tions, indeed exponential objects are sometimes called “internal homs”.

Given any arrow 𝑓 ∶ A → B, we can precompose it with the isomorphism
1 × A → A from lemma 3.2.4.2 to obtain an arrow 𝑓 ′ ∶ 1 × A → B. We can
then curry this arrow to obtain an arrow ⌜𝑓⌝ ≔ λ(𝑓 ′) ∶ 1 → A ⊃ B, yielding a
global element of the exponential called the name of 𝑓 .

For any object A, we always have the identity arrow id(A), and hence a global
element ⌜id(A)⌝ ∶ 1 → A ⊃ A, the internal identity.

Given any objects A , B , C, we can form the composite:

((A ⊃ B) × (B ⊃ C)) × A

((B ⊃ C) × (A ⊃ B)) × A

(B ⊃ C) × ((A ⊃ B) × A)

(B ⊃ C) × B)

C

σ × A

α

(B ⊃ C) × ε

ε

where σ is the product symmetry isomorphism (lemma 3.2.4.3), α is the product
associativity isomorphism (lemma 3.2.4.1), and the εs are the respective eval-
uation maps. Currying this map gives a map κ ∶ (A ⊃ B) × (B ⊃ C) → A ⊃ C,
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the internal composition operation. This has all the properties that we would
expect from composition, in particular, for 𝑓 ∶ A → B and 𝑔 ∶ B → C,

⟨⌜𝑓⌝ , ⌜𝑔⌝⟩ ⋅ κ = ⌜𝑓 ⋅ 𝑔⌝

3.4.2 Exponential Functors

We can use the universal property of exponential objects to define a covariant
exponential functor.
Definition 3.4.2.1 (covariant exponential of an arrow) For a fixed object A,
we define the exponential of an arrow 𝑔 ∶ B → C to be:

A ⊃ 𝑔 ≔ λ(εB ⋅ 𝑔) ∶ A ⊃ B → A ⊃ C

(where we subscript the evaluation maps to match their exponentials). By the
universal property of exponentials, A⊃𝑔 is the unique arrow making the triangle
commute:

A ⊃ B A ⊃ C

(A ⊃ B) × A B C

(A ⊃ C) × A

εC

εB 𝑔

A ⊃ 𝑔

(A ⊃ 𝑔) × A

If this definition seems rather unmotivated, it may help to keep in mind that
the idea behind an exponential of an arrow, A⊃𝑔, is to somehow “post-compose
𝑔 to the B in A ⊃ B”. This will make more sense shortly, when we will be in
a position to see that this definition makes exponential evaluation maps into a
natural transformation.
Lemma 3.4.2.2 (functoriality of exponentials) In a category ℂ with finite prod-
ucts and a fixed object A, the given definition of exponential of arrows yields a
functor,

A ⊃ – ∶ ℂ → ℂ

Proof. In order to prove that A ⊃ – is a functor, we must show that it preserves
the composition structure.

nullary composition: We must show that

A ⊃ id(B) = id(A ⊃ B)
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A ⊃ id(B)
= [definition of A ⊃ – on arrows]

λ(εB ⋅ id(B))
= [composition unit law]

λ(εB)
= [identity expansion for exponentials]

id(A ⊃ B)

binary composition: We must show that

A ⊃ (𝑔 ⋅ ℎ) = A ⊃ 𝑔 ⋅ A ⊃ ℎ

In the diagram,

A ⊃ B A ⊃ C A ⊃ D

B C D

(A ⊃ B) × A (A ⊃ C) × A (A ⊃ D) × A

εB εC εD

𝑔 ℎ

A ⊃ 𝑔 A ⊃ ℎ

A ⊃ (𝑔 ⋅ ℎ)

(A ⊃ 𝑔) × A (A ⊃ ℎ) × A

𝑔 ⋅ ℎ

(A ⊃ (𝑔 ⋅ ℎ)) × A

(I) (II)

the outer square commutes by the definition of A ⊃ (𝑔 ⋅ ℎ) and the inner
squares (I) and (II) commute by the definitions of A ⊃ 𝑔 and A ⊃ ℎ,
respectively. By the functoriality of the cartesian product,

(A ⊃ 𝑔) × A ⋅ (A ⊃ ℎ) × A = (A ⊃ 𝑔 ⋅ A ⊃ ℎ) × A

By pasting squares (I) and (II), we see that:

εB ⋅ (𝑔 ⋅ ℎ) = (A ⊃ 𝑔) × A ⋅ (A ⊃ ℎ) × A ⋅ εD

The result follows by the uniqueness clause of the universal property of
exponentials.
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3.4.3 Function Types

The exponential universal construction provides the categorical interpretation
of function types,

⟦A → B⟧ ≔ ⟦A⟧ ⊃ ⟦B⟧

The introduction rule,

Γ , 𝑥 ∶ A ⊢ M ∶ B
Γ ⊢ λ𝑥 . M ∶ A → B → +

is interpreted by currying:

⟦λ𝑥 . M⟧ ≔ λ(⟦M⟧)

and the elimination rule,

Γ ⊢ P ∶ A ⊃ B Γ ⊢ N ∶ A
Γ ⊢ P N ∶ B → −

is interpreted by the evaluation map:

⟦P N⟧ ≔ ⟨⟦P⟧ , ⟦N⟧⟩ ⋅ ε

3.5 Cartesian Closed Categories

A category having all finite products (i.e. a terminal object and binary prod-
ucts), as well as all exponentials, is known as a cartesian closed category. A
category that additionally has all finite coproducts (i.e. an initial object and
binary coproducts) is called bicartesian closed.

It turns out that every bicartesian closed category is distributive. We don’t have
time to give a full explanation of why this is the case, but the short version is
that it can be seen using the Yoneda principle, which says essentially that for
given objects X , Y ∶ ℂ, if for all objects Z, we have ℂ (X → Z) ≅ ℂ (Y → Z)
in Set then X ≅ Y in ℂ. You should think of this as generalizing the following
familiar fact about preordered sets:

(∀Z . X ≤ Z ⟺ Y ≤ Z) implies X ≅ Y



60 CHAPTER 3. UNIVERSAL CONSTRUCTIONS

Using this principle, the distributive law follow from:

ℂ (X × (A + B) → Z)
≅ [product symmetry]

ℂ ((A + B) × X → Z)
≅ [currying]

ℂ (A + B → X ⊃ Z)
≅ [uncotupling]

ℂ (A → X ⊃ Z) × ℂ (B → X ⊃ Z)
≅ [uncurrying]

ℂ (A × X → Z) × ℂ (B × X → Z)
≅ [product symmetry]

ℂ (X × A → Z) × ℂ (X × B → Z)
≅ [cotupling]

ℂ ((X × A) + (X × B) → Z)



Chapter 4

Two Dimensional Structure

We have deliberately presented the universal constructions of a bicartesian
closed category in such a way as to highlight the parallels between them. The
reader may be wondering whether there is some more general construction lurk-
ing in the wings, in terms of which terminal and initial objects, products, co-
products and exponentials can all be described. This is indeed the case: the
mystery construction is called an “adjunction”. But in order to describe it we
will need to first understand some 2-dimensional category theory.

4.1 Naturality

Naturality is the carrier of the two-dimensional structure of categories of cate-
gories. It imposes a sort of comprehension or uniformity principle that allows us
to interpret a family of features within a particular category as a single feature
in the ambient category of categories.

4.1.1 Natural Transformations

Definition 4.1.1.1 (natural transformation) For parallel functors, F , G ∶ ℂ →
𝔻, a natural transformation φ from F to G is a functor φ ∶ ℂ → 𝔻→ (where
𝔻→ is the arrow category of 𝔻) such that:

φ ⋅ dom = F and φ ⋅ cod = G

Explicitly, this means that,

• for each object A ∶ ℂ there is an arrow,

φ(A) ∶ 𝔻 (F(A) → G(A))

61
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called the component of φ at A, and

• for each arrow 𝑓 ∶ ℂ (A → B) there is a commuting square,

F(𝑓) ⋅ φ(B) = φ(A) ⋅ G(𝑓)

called the naturality square for φ at 𝑓 :

A B F(A) F(B)

G(A) G(B)

𝑓 F(𝑓)

G(𝑓)

ϕ(A) ϕ(B)

ℂ ∶ 𝔻 ∶

One way to think about this is that a functor “projects” an image of its domain
category into its codomain category. In this sense, a functor acts as a lens,
which may “distort” the structure of the source category by identifying distinct
objects or arrows. Under this interpretation, a component of a natural trans-
formation acts as a “homotopy” between the images of an object cast by two
parallel functors, and a naturality square ensures that these object homotopies
are consistent with the images of arrows.

You may also think of the naturality square above as a “2-dimensional arrow”
from the 1-dimensional arrow F(𝑓) to the 1-dimensional arrow G(𝑓), acting as
the “component” of φ at 𝑓 . But in an ordinary (1-dimensional) category, the
only “2-dimensional arrows” available are the trivial ones – i.e. equalities.

4.1.2 Functor Categories

Natural transformations provide a notion of arrows between parallel functors,
turning a hom set into a hom category:
Definition 4.1.2.1 (functor category) For categories ℂ and 𝔻, define the func-
tor category, “Fun(ℂ , 𝔻)”, to have the following structure:

objects Fun(ℂ , 𝔻)0 ≔ functors from ℂ to 𝔻
arrows Fun(ℂ , 𝔻) (F → G) ≔ natural transformations from F to G
identities id(F)(A) ≔ id(F(A))

(A component of an identity natural transformation is an identity arrow.)

composition (φ ⋅ ψ)(A) ≔ φ(A) ⋅ ψ(A)
(A component of a composite natural transformation is the composition
of the constituent components.)
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Composition of natural transformations in the functor category Fun(ℂ , 𝔻) is
associative and unital just because composition of morphisms in 𝔻 is.

An important class of natural transformations is the natural isomorphisms. A
natural isomorphism is simply an isomorphism in a functor category. Un-
packing this a bit, for parallel functors, F , G ∶ ℂ → 𝔻, a natural transformation
φ ∶ Fun(ℂ , 𝔻) (F → G) is a natural isomorphism just in case it has an inverse
φ−1 ∶ Fun(ℂ , 𝔻) (G → F).
Exercise 4.1.2.2 Show that a natural transformation is a (natural) isomor-
phism in the functor category Fun(ℂ , 𝔻) just in case each of its components is
an isomorphism in 𝔻.

An exponential object A ⊃ B in a category ℂ is an object representing the
collection of morphisms ℂ (A → B). If ℂ is a category of categories, then an
object in ℂ is a category and the morphisms between any two such are functors.
So it is natural to wonder whether functor categories are exponential objects
in categories of categories. This is generally the case when such exponential
categories exist. In particular, it is true in the category of small categories:
Fact 4.1.2.3 (exponential categories) The category Cat has functor categories
as exponential objects. That is, for 𝔸 , 𝔹 ∶ Cat,

𝔸 ⊃ 𝔹 = Fun(𝔸 , 𝔹)

From now on we will use exponential notation for functor categories.

4.2 2-Categories

4.2.1 2-Dimensional Categorical Structure

Something subtle and profound has just happened, so let’s go through it care-
fully. Recall that when we introduced categories, we gave them structure at two
different dimensions:

• at dimension 0, we have “points”, in the form of objects,

• and at dimension 1, we have “lines”, in the form of arrows.

But in introducing natural transformations, we just said that for any two fixed
objects, we have a whole category of functors and natural transformations be-
tween them, so the hom collections in Cat are not 0-dimensional sets, but rather
1-dimensional categories. This gives the category Cat structure at dimension 2
as well!

For fixed categories 𝔸 and 𝔹, and parallel functors F1 , F2 ∶ 𝔸 → 𝔹, we can draw
a natural transformation α ∶ F1 → F2 as a directed “surface” in a 2-dimensional
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diagram in Cat:

𝔸 𝔹

F1

F2

⇓ α

And if we have another parallel functor F3 ∶ 𝔸 → 𝔹 and natural transformation
γ ∶ F2 → F3, we can paste the diagrams together along F2 and draw the
composite natural transformation α ⋅ γ ∶ F1 → F3 as:

𝔸 𝔹

F1

F2

F3

⇓ α

⇓ γ

Now we come to the question of what happens if we don’t require the pair
of objects under consideration to remain fixed. Consider the following pair of
“adjacent” natural transformations:

𝔸 𝔹 ℂ

F1

F2

G1

G2

⇓ α ⇓ β

We have the parallel composite functors,

(F1 ⋅ G1) , (F2 ⋅ G2) ∶ 𝔸 → ℂ

Is there some way to form a composite natural transformation, α⋅⋅β ∶ F1 ⋅ G1 →
F2 ⋅ G2?1 Well, given an object A ∶ 𝔸, we know that the component of such a
composite natural transformation at A would be an arrow,

(α ⋅ ⋅β)(A) ∶ ℂ ((G1 ∘ F1)(A) → (G2 ∘ F2)(A))

Here is how we can define it:
Lemma 4.2.1.1 (horizontal composition of natural transformations) In the sit-
uation just described, there is a natural transformation

α ⋅ ⋅β ∶ F1 ⋅ G1 → F2 ⋅ G2
1 Read “α ⋅ ⋅β” as “α beside β” – that is, composed along their common boundary two

dimensions down, rather than the usual one dimension down with “– ⋅ –”. The reader may
amuse herself thinking about how to extend this pattern to still higher dimensions.
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called the horizontal composition of α and β, with components,

(α ⋅ ⋅β)(A) ≔ G1(α(A)) ⋅ β(F2(A)) = β(F1(A)) ⋅ G2(α(A))

Proof. To see that the two composites are indeed equal consider the component
of α at A in 𝔹. This determines a naturality square for β at α(A) in ℂ:

F1(A) F2(A) G1(F1(A)) G1(F2(A))

G2(F1(A)) G2(F2(A))

α(A) G1(α(A))

G2(α(A))

β(F1(A)) β(F2(A))(α ⋅ ⋅β)(A)

𝔹 ∶ ℂ ∶

(4.1)
establishing that the two expressions for the putative components of α ⋅ ⋅β are
equal.

Now we must show that this definition of components respects arrows in 𝔸. Let
𝑓 ∶ 𝔸 (A → B). Then in the diagram in ℂ,

G1(F1(A))

G1(F2(A))

G2(F1(A))

G2(F2(A))

G1(F1(B))

G1(F2(B))

G2(F1(B))

G2(F2(B))

β(F1(A))
β(F1(B))

G1(F1(𝑓))

G2(F1(𝑓))
β(F2(A))

β(F2(B))

G1(F2(𝑓))

G2(F2(𝑓))

G1(α(A))

G2(α(A))

G1(α(B))

G2(α(B))

• the left and right squares are the naturality squares for β at α(A) and
α(B),

• the top and bottom squares are the G1 and G2 functor-images of the
naturality squares for α at 𝑓 ,

• and the back and front squares are the naturality squares for β at F1(𝑓)
and F2(𝑓).

Pasting the top and front – or equivalently, the back and bottom – squares
establishes the naturality of α ⋅ ⋅β at 𝑓 .

Remark 4.2.1.2 (connection to arrow categories) The construction in the pre-
ceding proof should remind you of the double arrow category construction. This
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is because the arrow category ℂ→ is equivalent to the functor category 𝕀 ⊃ ℂ,
where 𝕀 is the interval category.
Exercise 4.2.1.3 Check that horizontal composition respects the composition
structure of each functor category by pasting squares onto diagram 4.1.

Mercifully, we do not need to think about natural transformations in this cum-
bersome, component-wise manner. After all, the whole point of the categorical
approach is to allow us to reason behaviorally rather than structurally. The
component-wise definition of natural transformations is reminiscent of Plato’s
Allegory of the Cave: the component arrows and naturality squares in the
codomain category are mere one-dimensional shadows cast by the flesh-and-
blood natural transformations, which are two-dimensional morphisms between
parallel one-dimensional morphisms living in a 2-dimensional category of cate-
gories. Let us turn our heads and stumble into the light.
Definition 4.2.1.4 (2-category) A strict 2-dimensional globular category, or
2-category, ℂ consists of the following data:

• A collection of 0-cells of ℂ.

• For each A , B ∶ ℂ, a hom category ℂ (A → B), whose objects are 1-cells
of ℂ and whose arrows are 2-cells of ℂ.

We write the composition of these arrows as “– ⋅–” and call it the “vertical
composition of 2-cells”.

• For each A , B , C ∶ ℂ, a composition bifunctor:

κA,B,C ∶ ℂ (A → B) × ℂ (B → C) → ℂ (A → C)

We write its action on objects as “– ⋅ –” and call it the “composition of
1-cells”. We write its action on arrows as “– ⋅ ⋅–” and call it the “horizontal
composition of 2-cells”.

• For each A ∶ ℂ, an identity cell functor:

ηA ∶ 𝟙 → C (A → A)

We write the image of ⋆ as “id(A)” and call it the “identity 1-cell”. We
write the image if id(⋆) as “id2(A)” and call it the “double-identity 2-cell”.

This data is required to respect the following relations:
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composition unitality

𝟙 × ℂ (A → B) ℂ (A → A) × ℂ (A → B)

ℂ (A → B) ℂ (A → B)

ℂ (A → B) × 𝟙 ℂ (A → B) × ℂ (B → B)

λ−1

≅

ηA × id

κA,A,B

ρ−1

≅

id × ηB

κA,B,B

where λ and ρ are the product unit isomorphisms.

Explicitly, this means that in the situation:

A A B B

id(A)

id(A)

𝑓1

𝑓2

id(B)

id(B)

⇓ id2(A) ⇓ α ⇓ id2(B)

id(A) ⋅ 𝑓𝑖 = 𝑓𝑖 = 𝑓𝑖 ⋅ id(B) and id2(A) ⋅ ⋅α = α = α ⋅ ⋅id2(B)

composition associativity

(ℂ (A → B) × ℂ (B → C)) × ℂ (C → D) ℂ (A → C) × ℂ (C → D)

ℂ (A → B) × ℂ (B → C) × ℂ (C → D) ℂ (A → D)

ℂ (A → B) × (ℂ (B → C) × ℂ (C → D)) ℂ (A → B) × ℂ (B → D)

α𝑙
≅

κA,B,C × id

κA,C,D

α𝑟

≅

id × κB,C,D

κA,B,D

where the αs are the product associativity isomorphisms.

Explicitly, this means that in the situation:

A B C D

𝑓1

𝑓2

𝑔1

𝑔2

ℎ1

ℎ2

⇓ α ⇓ β ⇓ γ

(𝑓𝑖 ⋅ 𝑔𝑖) ⋅ ℎ𝑖 = 𝑓𝑖 ⋅ (𝑔𝑖 ⋅ ℎ𝑖) and (α ⋅ ⋅β) ⋅ ⋅γ = α ⋅ ⋅(β ⋅ ⋅γ)
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The definition may seem daunting, but the intuition is straightforward. We
want to be able to compose 1-cells along their common 0-cell boundaries and 2-
cells along both their common 1-cell boundaries and along their common 0-cell
boundaries. Furthermore, we want every composable configuration of 2-cells
to have a unique composite. The last goal is accomplished by the composition
unitality and associativity laws, together with the requirement that composition
be a bifunctor, which implies the following:

nullary composition In the situation,

A B C

𝑓

𝑓

𝑔

𝑔

⇓ id ⇓ id

id(𝑓) ⋅ ⋅id(𝑔) = id(𝑓 ⋅ 𝑔)

binary composition In the situation,

A B C

𝑓1

𝑓2

𝑓3

𝑔1

𝑔2

𝑔3

⇓ α

⇓ γ

⇓ β

⇓ δ

(α ⋅ γ) ⋅ ⋅(β ⋅ ⋅δ) = (α ⋅ ⋅β) ⋅ (γ ⋅ ⋅δ)
This relation is known as the interchange law.

The category Cat with its categories, functors and natural transformations, is
a 2-category. Its hom categories are the functor categories, and its horizontal
composition of 2-cells is the horizontal composition of natural transformations.

4.2.2 String Diagrams

If we take the Poincaré (or graph) dual of the 2-dimensional diagrams we have
been drawing, we obtain a very useful graphical language for 2-categories, called
string diagrams. Specifically, we will use “planar progressive” string diagrams
to represent configurations of 0-, 1-, and 2-cells.

In the graphical language of string diagrams,

0-cells are represented by regions in the plane,

1-cells are represented by lines or “strings” or “wires”, (in our convention)
progressing from top to bottom,
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2-cells are represented by points, fattened up into “nodes” or “beads” with
the wires representing their domain 1-cells entering from above, and those
representing their codomain 1-cells exiting from below.

identity 1-cells are represented by a dashed wire, or usually, not at all,

1-cell composition is represented by juxtaposing wires side-by-side, separated
by the region representing their common boundary,

identity 2-cells are represented by a dashed node, or usually, not at all,

2-cell vertical composition is represented by wiring the output sockets of the
first node to the input sockets of the second,

2-cell horizontal composition is represented by juxtaposing nodes, together
with their respective wires, side-by-side,

As an example, the pasting diagram for the interchange law becomes the string
diagram:

𝑓1

𝑓2

𝑓3

𝑔1

𝑔2

𝑔3

α β

γ δ
A B C

Typically, we omit labeling the regions as their identities can always be inferred.

The commuting of diagram 4.1 in the definition of horizontal composition of
natural transformations represents the notion of naturality as independence,
depicted in string diagrams by the property that two beads without an output-
to-input connection between them may freely “slide” past one another along
their wires, and it makes no difference which is above or below the other.

F1

F2

G1

G2

α

β
=

F1

F2

G1

G2

α β =
F1

F2

G1

G2α

β

The idea of independence is the heart of naturality; the rest of its properties
can be recovered from this.

There is a handy “trick” for transforming diagrams within a category into string
diagrams using global elements. Notice that for any object A ∶ ℂ there is a
functor (which we typically overload with the same name) A ∶ 𝟙 → ℂ picking out
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that object, and for any arrow 𝑓 ∶ ℂ (A → B) there is a natural transformation
between the respective functors, which we can represent as the string diagram:

A

B

𝑓𝟙 ℂ

Exercise 4.2.2.1 Show how the commuting of naturality squares is a conse-
quence of naturality as independence.

4.3 Adjunctions

Adjunctions are constructions that may exist in the context of a 2-dimensional
category. In any 2-category adjunctions have a behavioral or “external” char-
acterization. In the 2-category Cat they also have structural or “internal” char-
acterizations.

4.3.1 Behavioral Characterization

For our primary definition of adjunction we adopt the following behavioral one,
which we call the “zigzag characterization”:
Definition 4.3.1.1 (adjunction – zigzag characterization) Anti-parallel func-
tors F ∶ ℂ → 𝔻 and G ∶ 𝔻 → ℂ form an adjunction, written “F ⊣ G”, if there
exist natural transformations:

• η ∶ id(ℂ) → F ⋅ G, called the adjunction’s unit, and

• ε ∶ G ⋅ F → id(𝔻), called the adjunction’s counit,

satisfying the relations:

• left zigzag law: (η ⋅ ⋅F) ⋅ (F ⋅ ⋅ε) = id(F)
• right zigzag law: (G ⋅ ⋅η) ⋅ (ε ⋅ ⋅G) = id(G)

The reason for the name “zigzag” becomes apparent when the laws are drawn
as string diagrams:

F
G

F

η

ε
= F



4.3. ADJUNCTIONS 71

G
F

G

η

ε
= G

The chirality of the zigzag laws comes from the fact that when F ⊣ G, F is
called left adjoint to G, and G is called right adjoint to F.

4.3.2 Structural Characterizations

Instead of thinking of an adjunction as a single structure living in the 2-category
Cat, we can think of it as a correlation between families of structures living
in two particular categories. This is like the component-wise presentation of
a natural transformation. One such characterization of an adjunction is the
following:
Definition 4.3.2.1 (adjunction – natural bijection of hom sets charaterization)
Anti-parallel functors F ∶ ℂ → 𝔻 and G ∶ 𝔻 → ℂ form an adjunction F ⊣ G if
for any A ∶ ℂ and B ∶ 𝔻 there is a natural bijection of hom sets:

ℂ (A → G(B))
𝔻 (F(A) → B) θ

This characterization is internal or structural because, unlike the zigzag char-
acterization, we look inside the categories ℂ and 𝔻. We will call the downward
direction of such a bijection “–♯” and the upward direction “–♭”, so:

𝑓 ∶ ℂ (A → G(B)) –♯
⟼ 𝑓 ♯ ∶ 𝔻(F(A) → B)
and

𝑔 ∶ 𝔻 (F(A) → B) –♭
⟼ 𝑔♭ ∶ ℂ(A → G(B))
and

(𝑓 ♯)♭ = 𝑓 and (𝑔♭)♯ = 𝑔

We call the image of an arrow under this bijection its adjoint complement.

A bijection of hom sets is natural if it extends along its boundary by the relevant
functors. In this case, that means that for any 𝑎 ∶ ℂ (A′ → A) and 𝑏 ∶ 𝔻 (B → B′)
we have,

A′ A G(B) G(B′)

F(A′) F(A) B B′

𝑎

F(𝑎) 𝑏

G(𝑏)𝑓 = 𝑔♭

𝑔 = 𝑓♯

ℂ ∶

𝔻 ∶



72 CHAPTER 4. TWO DIMENSIONAL STRUCTURE

Technically, this is a natural isomorphism in the functor category (ℂ°×𝔻)⊃Set
between ℂ (1– → G(2–)) and 𝔻 (F(1–) → 2–).
We won’t prove the equivalence of the various characterizations of adjunctions
in this course, but the fact that the zigzag characterization implies the natural
bijection of hom sets characterization is easy to see using string diagrams.

Given an arrow 𝑓 ∶ ℂ (A → G(B)), the obvious way to construct an arrow
𝑓 ♯ ∶ 𝔻(F(A) → B) out of the parts at hand is by defining,

𝑓 ♯ ≔ F(𝑓) ⋅ ε(B)

A

B G

𝑓
–♯

⟼

A

B
G

F𝑓

ε

Likewise, given an arrow 𝑔 ∶ 𝔻 (F(A) → B), the obvious way to construct an
arrow 𝑔♭ ∶ ℂ(A → G(B)) is by defining,

𝑔♭ ≔ η(A) ⋅ G(𝑔)

A

B

F

𝑔
–♭

⟼
A

B

F

G𝑔

η

We can use the zigzag laws to show that –♯ and –♭ are inverse operations:

(𝑓 ♯)♭ =
A

B
G

F
G

𝑓
ε

η
=

A

B
G F

G

𝑓

ε

η =
A

B G

𝑓

(𝑔♭)♯ =
A

B

F
G

F
𝑔

ε

η
=

A

B

F G
F

𝑔
ε

η
=

A

B

F

𝑔

The naturality of the bijection in the domain and codomain coordinates is also
obvious in the graphical language.
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• For naturality in the codomain coordinate, given 𝑏 ∶ 𝔻 (B → B′) we have:

𝑓 ♯⋅𝑏 =

A

B

B′

G

F𝑓

𝑏
ε

=

A

B

B′

G

F𝑓

𝑏
ε

= (𝑓⋅G(𝑏))♯

• For naturality in the domain coordinate, given 𝑎 ∶ ℂ (A′ → 𝑎) we have:

𝑎⋅𝑔♭ =

A′

A

B

F

G𝑔

𝑎
η =

A′

A

B

F

G𝑔

𝑎
η

= (F(𝑎)⋅𝑔)♭

Exercise 4.3.2.2 With 𝑓 , 𝑔, 𝑎 and 𝑏 as in the proof above, verify the following:

• (𝑔 ⋅ 𝑏)♭ = 𝑔♭ ⋅ G(𝑏)
• (𝑎 ⋅ 𝑓)♯ = F(𝑎) ⋅ 𝑓 ♯

We can work out that the adjoint complements of components of the unit and
counit of an adjunction are identities, which are easily seen in string diagrams:

id(G(B)) = B G
–♯

⟼ B
G F

ε
= ε(B)

id(F(A)) = A F
–♭

⟼ A
F G

η = η(A)

Two more structural characterizations of an adjunction – which are dual to one
anther – are given by the universal properties of its unit and counit.
Definition 4.3.2.3 (adjunction – universal property of unit characterization)
Anti-parallel functors F ∶ ℂ → 𝔻 and G ∶ 𝔻 → ℂ form and adjunction F ⊣ G if
there is a natural transformation η ∶ id(ℂ) → F ⋅ G such that for any 𝑓 ∶ ℂ (A →
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G(B)) there is a unique 𝑔 ∶ 𝔻 (F(A) → B) such that η(A) ⋅ G(𝑔) = 𝑓 :

(G ∘ F)(A)

A G(B)

F(A) B

η(A)

𝑓

𝑔

G(𝑔)

ℂ ∶

𝔻 ∶

Definition 4.3.2.4 (adjunction – universal property of counit characterization)
Anti-parallel functors F ∶ ℂ → 𝔻 and G ∶ 𝔻 → ℂ form and adjunction F ⊣ G
if there is a natural transformation ε ∶ G ⋅ F → id(𝔻) such that for any 𝑔 ∶
𝔻 (F(A) → B) there is a unique 𝑓 ∶ ℂ (A → G(B)) such that F(𝑓) ⋅ ε(B) = 𝑔:

A G(B)

F(A) B

(F ∘ G)(B)

ε(B)

𝑔

𝑓

F(𝑓)

ℂ ∶

𝔻 ∶

Of course, 𝑔 = 𝑓 ♯ and 𝑓 = 𝑔♭. So the “internal picture” of an adjunction looks
like this:

(G ∘ F)(A)

A G(B)

F(A) B

(F ∘ G)(B)

η(A)

ε(B)

𝑓 = 𝑔♭

𝑔 = 𝑓♯

G(𝑓♯)

F(𝑔♭)

β𝑟 ⇑

⇓ β𝑙
ℂ ∶

𝔻 ∶

The 2-cells labeled “β𝑙” and “β𝑟” are both equalities because ℂ and 𝔻 are just
ordinary (1-dimensional) categories so equality is the only possible kind of 2-cell.
But it is convenient to give them a suggestive name and orientation.
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4.3.3 Conversion Relations

The universal property of the counit should immediately remind you of the
definition of an exponential object. Indeed, for a fixed object A, we have endo-
functors

– × A ∶ ℂ → ℂ and A ⊃ – ∶ ℂ → ℂ
and an adjunction

– × A ⊣ A ⊃ –
The counit of this adjunction is the evaluation map and the unit is the pairing
map. The internal picture of this adjunction looks like this:

A ⊃ (X × A)

X A ⊃ B

X × A B

(A ⊃ B) × A

η(X)

ε(B)

λ(𝑓)

𝑓

A ⊃ 𝑓

λ(𝑓) × A
β𝑟 ⇑

ℂ ∶

ℂ ∶

Recall our interpretations for the introduction and elimination rules for function
types interpreted as exponentials (section 3.4.3):

⟦λ𝑥 . M⟧ ≔ λ(⟦M⟧) and ⟦P N⟧ ≔ ⟨⟦P⟧ , ⟦N⟧⟩ ⋅ ε

where Γ , 𝑥 ∶ A ⊢ M ∶ B, Γ ⊢ N ∶ A, and Γ ⊢ P ∶ A → B. The universal
property of exponentials is just the universal property of the counit of this
adjunction. Its commuting triangle β𝑟,

λ(𝑓) × A ⋅ ε(B) = 𝑓

expresses the β-equivalence relation for function type:

(λ𝑥 . M)N β≃ M[𝑥↦N]

as

⟦Γ⟧ ⟦Γ⟧ × ⟦A⟧ ⟦B⟧

(⟦A⟧ ⊃ ⟦B⟧) × ⟦A⟧

ε

⟦M⟧

λ⟦M⟧ × ⟦𝑥⟧

⟨id , ⟦N⟧⟩

⟨λ⟦M⟧ , ⟦N⟧⟩
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Furthermore, the bijection between the arrows 𝑓 and λ(𝑓) expresses the η-
equivalence relation for function type:

P
η
≃ λ𝑥 . P𝑥

as

⟦Γ⟧ ⟦A ⊃ B⟧

⟦Γ⟧ × ⟦A⟧ ⟦B⟧

(⟦A⟧ ⊃ ⟦B⟧) × ⟦A⟧

ε

⟦P 𝑥⟧

⟦P⟧

⟦P⟧ × ⟦𝑥⟧⏟⏟⏟⏟⏟
⟨π0 ⋅⟦P⟧,π1⋅⟦𝑥⟧⟩

where ⟦P⟧ × ⟦𝑥⟧ = ⟨π0 ⋅ ⟦P⟧ , π1 ⋅ ⟦𝑥⟧⟩ by lemma 3.2.1.2 and exercise 3.2.2.3, and
the projections interpret context weakening, which is silent in the syntax of type
theory.

Indeed, the βη-conversion relations of all the simple types we have considered
here can be characterized in this way due to the existence of adjunctions

– + – ⊣ ∆ ⊣ – × – and 0 ⊣ ! ⊣ 1

where ∆ and ! are respectively the diagonal and bang functors:

∆
ℂ ⟶ ℂ × ℂ
A ⟼ (A , A)
𝑓 ⟼ (𝑓 , 𝑓)

!
ℂ ⟶ 𝟙
A ⟼ ⋆
𝑓 ⟼ id(⋆)

4.3.4 Context Distributivity Revisited

The context distributivity laws for the positively-presented types, the distribu-
tive law and absorption law, are actually both instances of a more general result
about cartesian closed categories and adjoint functors called Frobenius reci-
procity.
Proposition 4.3.4.1 (Frobenius reciprocity) For anti-parallel functors F ∶ ℂ →
𝔻 and G ∶ 𝔻 → ℂ between cartesian closed categories, if there is an adjunction
F ⊣ G and the right adjoint G preserves exponentials then for objects A ∶ ℂ and
X ∶ 𝔻,

X × F(A) ≅ F(G(X) × A)

The idea is that X is the interpretation of some ambient context and F is the
functor determining some positively-presented type. Admittedly, the condition
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that G preserves exponentials seems unmotivated, but when you try to prove
the result, you see that it is exactly what is needed to make it go through.

Proof. By the Yoneda principle, for an arbitrary Z ∶ 𝔻,

𝔻 (X × F(A) → Z)
≅ [product symmetry]

𝔻 (F(A) × X → Z)
≅ [currying]

𝔻 (F(A) → X ⊃ Z)
≅ [adjoint complement –♭]

ℂ (A → G(X ⊃ Z))
≅ [assumption that G preserves exponentials]

ℂ (A → G(X) ⊃ G(Z))
≅ [uncurrying]

ℂ (A × G(X) → G(Z))
≅ [adjoint complement –♯]

𝔻 (F(A × G(X)) → Z)
≅ [product symmetry]

𝔻 (F(G(X) × A) → Z)

For example, in the case of the adjunction – + – ⊣ ∆, Frobenius reciprocity tells
us:

X × (+(A , B)) ≅ +(∆(X) × (A , B))
or, in other words:

X × (A + B) ≅ (X × A) + (X × B)

which is the distributive law!

What is really going on here is that there is a natural isomorphism in the functor
category (𝔻 × ℂ) ⊃ 𝔻,

1– × F(2–) ≅ F(G(1–) × 2–)
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